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SUMMARY 
This paper discusses the application of a multi-state model to diabetic retinopathy under the assumption 
that a continuous time Markov process determines the transition times between disease stages. The 
multi-state model consists of three transient states that represent the early stages of retinopathy, and one 
final absorbing state that represent the irreversible stage of retinopathy. By using a model with covariables, 
we explore the effects of factors that influence the onset, progression, and regression of diabetic retinopathy 
among subjects with insulin-dependent diabetes mellitus. We can also introduce time-dependent covariables 
in the model by assuming that the covariables remain constant between two observations. We can also 
obtain survival-type curves from each stage of the disease and for any combination of patient risk factors. 

INTRODUCTION 

The classification of early diabetic retinopathy on a scale from grade I to grade VI according to 
the modified Airlie House classification’. suggests that multi-state modelling might offer an 
innovative methodology to analyse the natural course of this disease and may be the most 
appropriate methodology for finding the factors that influence this disease process. Such analysis 
will likely not only assess more accurately the effects of the risk factors in the disease process, but 
will also allow the prediction of transition times between disease stages. 

Previous ~ t u d i e s ~ - ~  have used contingency tables and logistic regression models to find patient 
risk factors associated with progression of diabetic retinopathy. Only one previous study’ has 
modelled the effects of risk factors consistently with the longitudinal nature of the disease process 
using proportional hazard models. No previous study, however, has modelled diabetic 
complications using a multi-state model that allows progression and regression transitions 
among the different stages of diabetic retinopathy. 

A multi-state Markov model without covariates has had successful applications to the stages of 
cancer,’ the stages of HIV infection,’ and the stages of diabetic retinopathy l o  among chronic 
diseases. In all of these cases the major problem is the type of data collected from the respective 
longitudinal medical studies. Ideally, researchers would like to observe every transition time in 
a patient’s disease process. In general, however, one can only collect observations on stage of the 
process at the time of the patients’ irregular clinical visits. 

Marshall’ ’ and Marshall and Jones ” proposed the extension of this model in various directions. 
One such direction is the inclusion of covariates in the model. By introducing covariates into the 
models, one can not only describe the natural course of the disease, but also find the factors 
associated with progression and regression between disease stages. Marshall and Jones’ have 
developed a computer program called MARKOV to fit a general k-state Markov model. 
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THE DATA 

The subjects were 277 patients who had type I diabetes for at least five years, a mean age of 18 
years and ranged in age from 14 to 29 years when initially seen at the Eye-Kidney Clinic of the 
Barbara Davis Center for Childhood Diabetes at the University of Colorado Health Sciences 
Center. The Eye-Kidney Clinic is open to all patients 14 years of age or older, and who have had 
type I diabetes for at least three years. 

The average duration of insulin dependent diabetes mellitus for this populations is 
approximately 10 years, ranging from three to 28 years. The gender distribution is uniform. In 
data collection for this study, all subjects were seen longitudinally at least twice with visits at an 
average of one year apart for a mean follow-up of three years. A total of 882 patient visits 
occurred during the study period. 

At each visit, a retinal specialist graded retinal findings using a modified Airlie House 
classification ‘ v 2  in which grade I indicates no retinopathy; grade I1 indicates microaneurysms 
only; grades I11 and IV indicate intermediate stages of background retinopathy, and grades V and 
VI indicate preproliferative and proliferative retinopathy, respectively. The worse eye grade for 
each visit was used to define the subject’s state at the time of the visit. 

THE MULTI-STATE MARKOV MODEL 

The four-state Markov model that we consider for the analysis of these data includes three 
transient disease states: grade I; grades 11-111, and grades IV-V of early retinopathy (j = 1,2 3), 
and one absorbing state 4 representing retinopathy or grade VI. In this model the transient states 
are ordered according to j, and instantaneous transition, represented by the intensities, A, can 
occur from state j to the adjoining statesj - 1 or j + 1 as shown in Figure 1. No direct transitions 
are allowed from an early stage of retinopathy to the absorbing state (except from the state IV-V), 
and if transitions like this occurred, the model assumes that unobserved transitions have occurred 
before the final transition. Alternatively, we might have considered a six-state Markov model 
using the six grades of retinopathy. However, in addition to the attractiveness of a model with 
a reduced number of paramaters, the four-state model can reduce substantially the false 
transitions due to misclassification. 

Assuming that the underlying process is a Markov process, we represent this model using the 
transition intensity matrix A as 

- A12 0 
A23 

0 A32 - (A32 + A34) A34 

0 0 0 

or the transition probability matrix P(t). We establish the relation between the transition 
probability matrix P(t) and the transition intensity matrix A with the Kolmogorov forward 
differential equations 

-- ap(t) - P(t)A , 
at 

where the element (i, j) of the matrix P(t) represents the probability of a transition from the state 
i to the state j in a time interval t, denoted as pu(t) .  We can express the solution to this system of 
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Figure 1.  The multi-state Markov model for diabetic retinopathy with 4 states defined by the eye findings according to 
the Airlie House classification 

differential equation as 

P(t) = A diag {epr', epz', . . . , epk'} A-  ' , (3) 

where A is the square matrix containing in column i the eigenvector associated with the 
eigenvalue pi of the transition intensity matrix A. For a more detailed discussion about Markov 
processes, see Cox and Miller.14 

We can extend the model by introducing covariables as a proportional factor in the baseline 
transition intensities A's. We represent the regression for the element ( i ,  j) of the transition 
intensity matrix A as 

nij(z) = A..e@ijz, 1J (4) 

where Bij is the vector of regression coefficients associated with the vector of covariables z for the 
transition between the states i and j .  Note that model (4) for the transition intensity A,(z) 
resembles the proportional hazard model with constant hazard function. We can use the resulting 
transition intensity matrix A(z) for a subject with vector of covariates z in equations (2) and (3) to 
compute the transition probability matrix P(t1z). The elements pij(tIz)'s of this transition 
probability matrix constitute the contribution of each observation to the likelihood function. 

MODEL SELECTION 

We must consider two types of model selection procedures in the context of this multi-state 
Markov model. The first, more classical in statistical analysis, is the selection of covariates 
associated significantly with the progression and regression of the process. Given the large 
number of parameters associated with each covariate in model (4), it seems reasonable to consider 
a forward selection procedure. The second, more specific to this Markov model, relates to the 
selection of the most parsimonious representation of the association between each covariate and 
the disease process. 

Consider the case of a model with a single covariate. In the context of this four-state model for 
diabetic retinopathy, there are three natural models for representing the effect of the covariate in 
the progression and regression of the disease process. The first, named the saturated model, is 
defined as the model in which the effect of the covariate differs in each of the five disease 
transitions (Figure 1). In this model we have a total of 10 parameters, five baseline transition 
intensities, and five different regression coefficients. The second model, named the progression 
and regression (PR) model, is defined as the model in which the effect of the covariate is the same 
for all progression transitions, and the same for all regression transitions. More formally, we 
formulate this model by assuming that the null hypothesis Hb: Bj , j+  = B,,, j = 1,2,3 and 
pj, j -  = B,,j = 2 ,3  is true. Under this hypothesis the number of parameters associated with each 
covariable reduces from five to only two. We can write the proportional intensity model (4) under 
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this hypothesis as 
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Finally, the third model, called the progression minus regression (PMR) model, is defined as the 
model in which the effect of the covariate is the same for all progression transitions and the same, 
but with a sign change, for all regression transitions. Formally, we can formulate the hypothesis 
as Hg: 8, = - fir = /I, provided that HA is true, and therefore model (4) reduces to 

Assuming that this hypothesis is true, we reduce by four the number of parameters associated 
with this covariate with respect to model (4) and by one parameter with respect to model (5). This 
reduction becomes extremely important when we include more variables in the model. In 
addition to the reduction in the number of parameters, if the null hypotheses HA and (or) H,” are 
true we can expect, according to our experience, to have a more robust estimation and 
substantially more power to assess the effect of the covariate in the disease process, and less 
chance that we overfit the model. 

We can use the likelihood ratio and the Wald tests to test these two hypotheses. The first is 
more convenient for covariate selection, while the Wald test is more convenient for testing HA and 
H,“, since we need only fit the saturated model. 

ESTIMATION OF PARAMETERS 

The major distinction of this multi-state Markov model with respect to other related techniques is 
its ability to analyse unobserved transition times based on the observation of the process at 
arbitrary times. Typical information collected at each visit from the patient includes the grade of 
diabetic retinopathy and other disease-related measurements. If i and j represent the observed 
states of the process at times s and t, respectively, then the contribution of this observed transition 
to the likelihood function is - s; z), that is, the element ( i , j )  of the transition probability 
matrix (3) evaluated at time t - s and with covariate z. 

The total contribution of an individual to the likelihood function is the result of the product of 
the contribution from each observed transition. The full likelihood function is the product of all 
individual contributions. The model can be adapted to handle time-dependent covariables by 
replacing the time-invariate covariate contribution, p i ,  j ( t  - s; z), with p i ,  j ( t  - s; z(s)) by assuming 
that the time-dependent covariate remains constant between the two consecutive times s and t. 
Note that the times s and t are more often arbitrary times and they do not necessarily represent 
the actual transition times of the underlying disease process. Furthermore, given the form in 
which the data is collected, we must assume that more than one transition may possibly occur 
between these two observed times. 

Maximum likelihood estimates for A and /3 can be obtained by maximizing the likelihood 
function with respect to these parameters, and asymptotic estimates of the standard errors of the 
estimates can be obtained by inverting the empirical information matrix. Quasi-Newton 
algorithms can be used to find the maximum likelihood estimates using only an analytical 
expression for the likelihood function and using finite differences to obtain numerical 
approximations of the derivatives. Given the high cost of the evaluation of the likelihood function 
in this case, this algorithm can be significantly accelerated by using an analytic expression for the 
first derivatives. In both situations the second derivative is updated at each iteration by using 
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Cholesky or QR factorization. A complete discussion of these methods can be found in Dennis 
and Schnabel.” 

SURVIVAL CURVES 

This type of data can also be analysed using more traditional techniques found in survival 
analysis. If we denote T as the random variable representing the time free of state 4 (grade VI) 
retinopathy, we can use Cox’s regression model to  find factors associated with the distribution of 
T. The problem with using this model and other classical survival analysis models is the high 
percentage, 98 per cent in this case, of right censoring in the data. On the other hand, an 
important amount of data representing transitions between intermediate stages of the disease 
process is collected during the study period. This data contains valuable information about the 
disease process and can be used to find the various factors that are associated with the 
progression and regression of the various stages of the disease. 

The multi-state model can be seen as a natural generalization of classical survival analysis 
models. Instead of having one transient and one absorbing state that characterize survival 
analysis, the multi-state model allows multiple transient states and the same absorbing final state. 
This characteristic can make this model an approach significantly more efficient in analysing 
highly censored data. This is particularly true when most of the transition data are observed 
between intermediate states, such as in diabetic retinopathy 

The functional relationship between the survival function and the transition probability matrix 
can be obtained by the equation 

Si(tlz) = 1 - ~ i 4 ( t ;  21, 

where Si( t l z )  is the survival function from the state i for a subject with covariables z, and where 
pik(t; z) is the element (i, k) of the transition probability matrix P(t; z )  Although the transition 
intensities are time-invariant, the associated hazard function is 

4 

Si (t I 2) 1 - ~ i 4 ( t ;  2) 1 - ~ i 4 ( t ;  2) 

since A14(~)  = A24(~)  = = 0, and where the expression in the numerator is direct 
consequence of the Kolmogorov forward differential equation (2). 

RESULTS 

At the beginning of the study, the patients were distributed among the four stages of diabetic 
retinopathy as 42 per cent, 53 per cent, 5 per cent and 0 per cent, respectively. By definition in this 
study, stage 4 started with no subjects. The distribution at the end of the study period was 26 per 
cent, 53 per cent, 19 per cent, and 2 per cent, respectively. Note that these probabilities 
distributions do not correspond to a fixed period of time for each subject, so they are not valid 
information for estimating transition probabilities. 

A single-covariate Markov model was used to assess the individual effects of factors associated 
with diabetic retinopathy using a custom-designed computer program.8 The full model with five 
regression coefficients, model (4), the progression and regression model with two regression 
coefficients, model (S) ,  and the progression minus regression model with only one regression 
coefficient, model (6), were fitted to each factor considered in this study (Table I). For each 



1980 G. MARSHALL A N D  R. JONES 

Table I. Likelihood ratio test of single-covariable Markov models for various factors 
associated with diabetic retinopathy using the full model, the PR model, and the PMR model. 

All tests are compared to a basic model without covariates 

Factors Full model PR model PMR model 
x' (5)t x 2  (2) x' (1) 

Duration of diabetes 58.2 54.75 475 
Age 33*5* 26.3 202 
Mean HbA,, 27.2 22.2 22.2* 
Diastolic blood pressure 12.0 10.9 10.51 
HbAI, at the visit 10.7 9.0 8.9 * 
Gender 9.8* 3.6 1.6 
Smoking 9.4 4.1 3.6* 
Systolic blood pressure 6.7 6.4 6 1 *  
Cholesterol 5.0 4.5 4.41 
Family Hx hypertension 4.5 4.3* 0 9  

Best model based on likelihood ratio test 
t The likelihood ratio statistic for testing no effect in the covariate with the associated degree of freedom in 
parenthesis 

covariate, the most parsimonious model among these three was found using the likelihood ratio 
test. If a factor based on the best model was found to be significantly associated with the disease 
process, the parsimonious representation of this factor was later used for multiple regression 
analysis. 

The duration of diabetes, the age of the subject, and the mean HbA1, levels (mean of all 
assessments at or before visit time) were the factors most associated with transitions of diabetic 
retinopathy. Diastolic and systolic blood pressure and values of HbAI, at visit times were also 
associated with the disease process. All other factors, including gender, mean cholesterol level 
levels (mean of all assessments at or before visit time), family history of hypertension, systolic 
blood pressure, and a history of smoking, were not significantly associated with changes in 
diabetic retinopathy. The significance of the association between these factors and transition 
times was tested using the likelihood ratio test (Table I). The only three factors in this study that 
are time-independent covariates are gender, family history of hypertension, and a history of 
smoking. 

Duration of diabetes shows similar effects in all progressive transitions and similar effects in all 
regressive transitions. Model (5) is chosen as the best representation for the association of this 
factor and diabetic retinopathy. The regression coefficient estimates for this model were 

= (0.0528, - 0-2223), showing a significant departure from the assumption of model (6). Based 
on the standard errors of the estimates, (0.02774, 0.0456), and their correlation coefficient, 
r = 05295, we can construct a Wald test for the hypothesis Hi: /3, = - PI, associated with model 
(6). By using L = (1, l)', the Wald statistic is 

w =  (Lj)'(LvjL)-'(L)) = o'0288 a - - 6.80 

This value has an associated p-value lower than 0.01 based on the chi-square distribution with 
one degree of freedom. The equivalent likelihood ratio test for this hypothesis is 
- 2 log {L , /L5}  = 54.7 - 475 = 7.2 (Table I). These two results confirm that the PMR model 
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Table 11. Parameter estimates and standard errors for the final multiple regression model 

Factor 

Baseline 
Baseline 
Baseline 
Baseline 
Baseline 
Duration of diabetes 
Duration of diabetes 
HbAIc 
Diastolic blood pressure 

Parameter Estimate Standard error 

0.0566 
0.0121 
0.0163 
0.0746 
0.0024 
0.0729 

0-2 128 
0-0178 

- 0.2084 

OQ075 
0.0024 
0.0035 
00243 
0.001 1 
0.0283 
0046 1 
0.0386 
0.0056 

does not hold for duration of diabetes. Confidence intervals for the parameters in the model can 
be obtained by using a Wald-type test based on normal approximation. 

Table I1 gives the estimates and the standard errors of the estimates for the parameters of the 
final multiple regression model. Duration of diabetes remained the most important factor for 
explaining changes in diabetic retinopathy. As expected, cumulative HBAl,was the second most 
important clinical variable associated with transitions in retinopathy. The additional contribu- 
tion of this factor in terms of the likelihood ratio chi-square test is slightly superior to the 
chi-square obtained without controlling for duration of diabetes. Diastolic blood pressure also 
remained in the model showing that it is an independent factor associated with diabetic 
retinopathy. 

The baseline parameters represent the transition rates from one stage to another for a subject 
with average risk factors (in our study these numbers are 10.7 years of duration of diabetes 
a HbAl, value of 11.8 per cent, and a value of diastolic blood pressure of 70) for a given period of 
time, in this study one month. By multiplying the baseline transition estimate from stage 3 to 
stage 4 for 12 month and 100 subjects, we conclude that an average of 2.88 ( = 0.0024 x 12 x 100) 
transitions will occur from stage 3 to stage 4 in a period of one year in a group of subjects with 
average risk factors. Similar conclusions can be made from the remaining baseline transition 
estimates. The parameters associated with the covariates can be interpreted siinilarly to the 
regression coefficients in the Cox regression model. The increment of one year of duration of 
diabetes will increase the risk of progression on the disease process 7.5 per cent (e0'0729 = 1.075) 
and reduces the chances of regression in the disease process 19 per cent (e-0'2084 = 0.81). 

Figure 2 shows estimated survival curves of the probability of remaining free of state 4 (grade 
VI) retinopathy for a subject with eight years since the onset of diabetes, 12 per cent of HbA1,, 
and a diastolic blood pressure of 70. The three curves represent the survival curves.for starting in 
one of the three transient stages. Figure 2 shows that the probabilities of remaining free of state 
4 (grade VI) retinopathy during a period of five years are 96 per cent, 94 per cent, and 86 per cent 
starting from stage 1,2 and 3 at time zero, respectively. These probabilities dramatically decrease 
during a period of 10 years to 77 per cent, 75 per cent, and 65 per cent, respectively. 

These probabilities and Figure 2 also show that staying in stage 2 does not significantly 
increase the risk of progressing to diabetic retinopathy. However, stage 3 shows a significant 
reduction during the first five years of the probability of staying free of retinopathy and has 
similar reduction in the second five-year period when compared to the probabilities of stages 
1 and 2. 



1982 G. MARSHALL A N D  R. JONES 

0.5 J I 

2 3 4 5 6 7 8 9 10 0 1 

Time (in years) 

Figure 2. Survival-type curves for the probability of staying free of grade VI retinopathy by eye grades 

DISCUSSION 

This paper has demonstrated that a multi-state Markov model is not only an innovative 
statistical tool for the analysis of longitudinal and event history data, but with the introduction of 
the PR and PMR models it is also a feasible regression technique. 

The results of the multi-state model have confirmed much of what is known about the natural 
course and the factors affecting diabetic retinopathy. However, using the Markov model we have 
learned more about how the different factors affect the disease process over time. 

As many cross-sectional studies have shown, duration of diabetes is the single most important 
factor associated with the rate of progression among the different stages of diabetic retinopathy. 
Some of the factors found to be significantly associated with eye complications were not longer 
significant when duration of diabetes was included in the model. In a multivariate model we 
found that cumulative mean HbAI, and diastolic blood pressure remained significant even after 
adjusting for the duration of the disease. 

The regression analyses in the context of multi-state Markov models becomes a feasible 
statistical technique when the number of parameters associated with the different covariates are 
significantly reduced by introducing the PR and PMR models. This not only prevents overfitting 
the data with redundant parameters, but also provides meaningful clinical information about the 
effects of different risk factors in the disease process. Almost all factors found to be significantly 
associated with diabetic retinopathy had their best representation in the PMR model. Duration 
of diabetes was not only the most important factor associated with changes in eye complications, 
but was the only variable for which the PR model was the best representation. Although age in 
years had its best representation in the full model, the likelihood ratio between the full model and 
the PR model was not significant at the 5 per cent level ( p  = 0.066). 

Multi-state regression modelling should become an increasingly important and attractive 
statistical technique for the analysis of longitudinal data dealing with stages of chronic disease. 
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However, this will only be possible when more computer programs for the models reviewed in 
this paper become more accessible and easy to  use. 
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