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Abstract12

Objective: Brain computer interfaces (BCI) enable direct communication with a computer,13

using neural activity as the control signal. This neural signal is generally chosen from a variety of14

well-studied electroencephalogram (EEG) signals. For a given BCI paradigm, feature extractors15

and classifiers are tailored to the distinct characteristics of its expected EEG control signal, lim-16

iting its application to that specific signal. Convolutional Neural Networks (CNNs), which have17

been used in computer vision and speech recognition to perform automatic feature extraction18

and classification, have successfully been applied to EEG-based BCIs; however, they have mainly19

been applied to single BCI paradigms and thus it remains unclear how these architectures gener-20

alize to other paradigms. Here, we ask if we can design a single CNN architecture to accurately21

classify EEG signals from different BCI paradigms, while simultaneously being as compact as22

possible. Approach: In this work we introduce EEGNet, a compact convolutional neural net-23

work for EEG-based BCIs. We introduce the use of depthwise and separable convolutions to24

construct an EEG-specific model which encapsulates well-known EEG feature extraction con-25

cepts for BCI. We compare EEGNet, both for within-subject and cross-subject classification, to26

current state-of-the-art approaches across four BCI paradigms: P300 visual-evoked potentials,27

error-related negativity responses (ERN), movement-related cortical potentials (MRCP), and28

sensory motor rhythms (SMR). Results: We show that EEGNet generalizes across paradigms29

better than, and achieves comparably high performance to, the reference algorithms when only30

limited training data is available across all tested paradigms. In addition, we demonstrate three31

different approaches to visualize the contents of a trained EEGNet model to enable interpreta-32

tion of the learned features. Significance: Our results suggest that EEGNet is robust enough33

to learn a wide variety of interpretable features over a range of BCI tasks.Our models can be34

found at: https://github.com/vlawhern/arl-eegmodels.35

Keywords: Brain-Computer Interface, EEG, Deep Learning, Convolutional Neural Network,36

P300, Error-Related Negativity, Sensory Motor Rhythm37
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1 Introduction38

A Brain-Computer Interface (BCI) enables direct communication with a machine via brain sig-39

nals [1]. Traditionally, BCIs have been used for medical applications such as neural control of40

prosthetic artificial limbs [2]. However, recent research has opened up the possibility for novel BCIs41

focused on enhancing performance of healthy users, often with noninvasive approaches based on42

electroencephalography (EEG) [3–5]. Generally speaking, a BCI consists of five main processing43

stages [6]: a data collection stage, where neural data is recorded; a signal processing stage, where44

the recorded data is preprocessed and cleaned; a feature extraction stage, where meaningful infor-45

mation is extracted from the neural data; a classification stage, where a decision is interpreted from46

the data; and a feedback stage, where the result of that decision is provided to the user. While these47

stages are largely the same across BCI paradigms, each paradigm relies on manual specification48

of signal processing [7], feature extraction [8] and classification methods [9], a process which often49

requires significant subject-matter expertise and/or a priori knowledge about the expected EEG50

signal. It is also possible that, because the EEG signal preprocessing steps are often very specific51

to the EEG feature of interest (for example, band-pass filtering to a specific frequency range), that52

other potentially relevant EEG features could be excluded from analysis (for example, features53

outside of the band-pass frequency range). The need for robust feature extraction techniques will54

only continue to increase as BCI technologies evolve into new application domains [3–5,10–12].55

Deep Learning has largely alleviated the need for manual feature extraction, achieving state-of-56

the-art performance in fields such as computer vision and speech recognition [13, 14]. Specifically,57

the use of deep convolutional neural networks (CNNs) has grown due in part to their success in58

many challenging image classification problems [15–19], surpassing methods relying on hand-crafted59

features (see [14] and [20] for recent reviews). Although the majority of BCI systems still rely on60

the use of handcrafted features, many recent works have explored the application of Deep Learning61

to EEG signals. For example, CNNs have been used for epilepsy prediction and monitoring [21–25],62

for auditory music retrieval [26,27], for detection of visual-evoked responses [28–31] and for motor63

imagery classification [32, 33], while Deep Belief Networks (DBNs) have been used for sleep stage64

detection [34], anomaly detection [35] and in motion-onset visual-evoked potential classification [36].65

CNNs using time-frequency transforms of EEG data were used for mental workload classification66

[37] and for motor imagery classification [38–40]). Restricted Boltzman Machines (RBMs) have been67

used for motor imagery [41]. An adaptive method based on stacked denoising autoencoders has been68

proposed for mental workload classification [42]). These studies focused primarily on classification69

in a single BCI task, often times using task-specific knowledge in designing the network architecture.70

In addition, the amount of data used to train these networks varied significantly across studies, in71

part due to the difficulty in collecting data under different experimental designs. Thus, it remains72

unclear how these previous deep learning approaches would generalize both to other BCI tasks as73

well as to variable training data sizes.74

In this work we introduce EEGNet, a compact CNN for classification and interpretation of75

EEG-based BCIs. We introduce the use of Depthwise and Separable convolutions, previously used76

in computer vision [43], to construct an EEG-specific network that encapsulates several well-known77

EEG feature extraction concepts, such as optimal spatial filtering and filter-bank construction,78

while simultaneously reducing the number of trainable parameters to fit when compared to exist-79
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ing approaches. We evaluate the generalizability of EEGNet on EEG datasets collected from four80

different BCI paradigms: P300 visual-evoked potential (P300), error-related negativity (ERN),81

movement-related cortical potential (MRCP) and the sensory motor rhythm (SMR), representing82

a spectrum of paradigms based on classification of Event-Related Potentials (P300, ERN, MRCP)83

as well as classification of oscillatory components (SMR). In addition, each of these data collec-84

tions contained varying amounts of data, allowing us to explore the efficacy of EEGNet on various85

training data sizes. Our results are as follows: We show that EEGNet achieves improved classifi-86

cation performance over an existing paradigm-agnostic EEG CNN model across nearly all tested87

paradigms when limited training data is available. In addition, we show that EEGNet effectively88

generalizes across all tested paradigms. We also show that EEGNet performs just as well as a89

more paradigm-specific EEG CNN model, but with two orders of magnitude fewer parameters to90

fit, representing a more efficient use of model parameters (an aspect that has been explored in91

previous deep learning literature, see [43,44]). Finally, through the use of feature visualization and92

model ablation analysis, we show that neurophysiologically interpretable features can be extracted93

from the EEGNet model. This is important as CNNs, despite their ability for robust and auto-94

matic feature extraction, often produce hard to interpret features. For neuroscience practitioners,95

the ability to derive insights into CNN-derived neurophysiological phenomena may be just as im-96

portant as achieving good classification performance, depending on the intended application. We97

validate our architecture’s ability to extract neurophysiologically interpretable signals on several98

well-studied BCI paradigms.99

The remainder of this manuscript is structured as follows. Section 2.1 gives a brief description100

of the four datasets used to validate our CNN model. Section 2.2 describes our EEGNet model as101

well as other BCI models (both CNN and non-CNN based models) used in our model comparison.102

Section 3 presents the results of both within-subject and cross-subject classification performance,103

as well as results of our feature explainability analysis. We discuss our findings in more detail in104

the Discussion.105

2 Materials and Methods106

2.1 Data Description107

BCIs are generally categorized into two types, depending on the EEG feature of interest [45]:108

event-related and oscillatory. Event-Related Potential (ERP) BCIs are designed to detect a high109

amplitude and low frequency EEG response to a known, time-locked external stimulus. They are110

generally robust across subjects and contain well-stereotyped waveforms, enabling the time course111

of the ERP to be modeled through machine learning efficiently [46]. In contrast to ERP-based BCIs,112

which rely mainly on the detection of the ERP waveform from some external event or stimulus,113

Oscillatory BCIs use the signal power of specific EEG frequency bands for external control and are114

generally asynchronous [47]. When oscillatory signals are time-locked to an external stimulus, they115

can be represented through event-related spectral perturbation (ERSP) analyses [48]. Oscillatory116

BCIs are more difficult to train, generally due to the lower signal-to-noise ratio (SNR) as well as117

greater variation across subjects [47]. A summary of the data used in this manuscript can be found118
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Paradigm Feature Type Bandpass Filter # of Subjects Trials per Subject # of Classes Class Imbalance?

P300 ERP 1-40Hz 15 ∼ 2000 2 Yes, ∼ 5.6:1
ERN ERP 1-40Hz 26 340 2 Yes, ∼ 3.4:1

MRCP ERP/Oscillatory 0.1-40Hz 13 ∼ 1100 2 No
SMR Oscillatory 4-40Hz 9 288 4 No

Table 1: Summary of the data collections used in this study. Class imbalance, if present, is given as
odds; i.e.: an odds of 2:1 means the class imbalance is 2/3 of the data for class 1 to 1/3 of the data
for class 2. For the P300 and ERN datasets, the class imbalance is subject-dependent; therefore,
the odds is given as the average class imbalance over all subjects.

in Table 1119

2.1.1 Dataset 1: P300 Event-Related Potential (P300)120

The P300 event-related potential is a stereotyped neural response to novel visual stimuli [49]. It is121

commonly elicited with the visual oddball paradigm, where participants are shown repetitive “non-122

target” visual stimuli that are interspersed with infrequent “target” stimuli at a fixed presentation123

rate (for example, 1 Hz). Observed over the parietal cortex, the P300 waveform is a large positive124

deflection of electrical activity observed approximately 300 ms post stimulus onset, the strength125

of the observed deflection being inversely proportional to the frequency of the target stimuli. The126

P300 ERP is one of the strongest neural signatures observable by EEG, especially when targets127

are presented infrequently [49]. When the image presentation rate increases to 2 Hz or more, it is128

commonly referred to as rapid serial visual presentation (RSVP), which has been used to develop129

BCIs for large image database triage [50–52].130

The EEG data used here have been previously described in [51]; a brief description is given131

below. 18 participants volunteered for an RSVP BCI study. Participants were shown images of132

natural scenery at 2 Hz rate, with images either containing a vehicle or person (target), or with no133

vehicle or person present (non-target). Participants were instructed to press a button with their134

dominant hand when a target image was shown. The target/non-target ratio was 20%/80%. Data135

from 3 participants were excluded from the analysis due to excessive artifacts and/or noise within136

the EEG data. Data from the remaining 15 participants (9 male and 14 right-handed) who ranged in137

age from 18 to 57 years (mean age 39.5 years) were further analyzed. EEG recordings were digitally138

sampled at 512 Hz from 64 scalp electrodes arranged in a 10-10 montage using a BioSemi Active139

Two system (Amsterdam, The Netherlands). Continuous EEG data were referenced offline to the140

average of the left and right earlobes, digitally bandpass filtered, using an FIR filter implemented141

in EEGLAB [53], to 1-40 Hz and downsampled to 128 Hz. EEG trials of target and non-target142

conditions were extracted at [0, 1]s post stimulus onset, and used for a two-class classification.143

2.1.2 Dataset 2: Feedback Error-Related Negativity (ERN)144

Error-Related Negativity potentials are perturbations of the EEG following an erroneous or unusual145

event in the subject’s environment or task. They can be observed in a variety of tasks, including time146
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interval production paradigms [54] and in forced-choice paradigms [55, 56]. Here we focus on the147

feedback error-related negativity (ERN), which is an amplitude perturbation of the EEG following148

the perception of an erroneous feedback produced by a BCI. The feedback ERN is characterized as149

a negative error component approximately 350ms, followed by a positive component approximately150

500ms, after visual feedback (see Figure 7 of [57] for an illustration). The detection of the feedback151

ERN provides a mechanism to infer, and to possibly correct in real-time, the incorrect output of a152

BCI. This two-stage system has been proposed as a hybrid BCI in [58, 59] and has been shown to153

improve the performance of a P300 speller in online applications [60].154

The EEG data used here comes from [57] and was used in the “BCI Challenge” hosted by Kaggle155

(https://www.kaggle.com/c/inria-bci-challenge); a brief description is given below. 26 healthy156

participants (16 for training, 10 for testing) participated in a P300 speller task, a system which uses a157

random sequence of flashing letters, arranged in a 6×6 grid, to elicit the P300 response [61]. The goal158

of the challenge was to determine whether the feedback of the P300 speller was correct or incorrect.159

The EEG data were originally recorded at 600Hz using 56 passive Ag/AgCl EEG sensors (VSM-160

CTF compatible system) following the extended 10-20 system for electrode placement. Prior to our161

analysis, the EEG data were band-pass filtered, using an FIR filter implemented in EEGLAB [53],162

to 1-40 Hz and down-sampled to 128Hz. EEG trials of correct and incorrect feedback were extracted163

at [0, 1.25]s post feedback presentation and used as features for a two-class classification.164

2.1.3 Dataset 3: Movement-Related Cortical Potential (MRCP)165

Some neural activities contain both ERP as well as an oscillatory components. One particular166

example of this is the movement-related cortical potential (MRCP), which can be elicited by vol-167

untary movements of the hands and feet and is observable through EEG along the central and168

midline electrodes, contralateral to the hand or foot movement [62–65]. The MRCP components169

can be seen before movement onset (a slow 0-5Hz readiness potential [66, 67] and an early desyn-170

chronization in the 10-12Hz frequency band), at movement onset (a slow motor potential [67,68]),171

and after movement onset (a late synchronization of 20-30Hz activity approximately 1 second after172

movement execution). The MRCP has been used previously to develop motor control BCIs for173

both healthy and physically disabled patients [69–71]174

The EEG data used here have been previously described in [72]; a brief description is given175

below. In this study, 13 subjects performed self-paced finger movements using the left index, left176

middle, right index, or right middle fingers. The data was recorded using a 256 channel BioSemi177

Active II system at 1024 Hz. Due to extensive signal noise present in the data, the EEG data178

were first processed with the PREP pipeline [73]. The data were referenced to linked mastoids,179

bandpass filtered, using an FIR filter implemented in EEGLAB [53], between 0.1 Hz and 40 Hz,180

and then downsampled to 128 Hz. We further downsampled the channel space to the standard 64181

channel BioSemi montage. The index and middle finger blocks for each hand were combined for182

binary classification of movements originating from the left or right hand. EEG trials of left and183

right hand finger movements were extracted at [−.5, 1]s around finger movement onset and used184

for a two-class classification.185
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2.1.4 Dataset 4: Sensory Motor Rhythm (SMR)186

A common control signal for oscillatory-based BCI is the sensorimotor rhythm (SMR), wherein187

mu (8-12Hz) and beta (18-26Hz) bands desynchronize over the sensorimotor cortex contralateral188

to an actual or imagined movement. The SMR is very similar to the oscillatory component of the189

MRCP. Although SMR-based BCIs can facilitate nuanced, endogenous BCI control, they tend to190

be weak and highly variable across and within subjects, conventionally demanding user-training191

(neurofeedback) and long calibration times (20 minutes) in order to achieve reasonable performance192

[45].193

The EEG data used here comes from BCI Competition IV Dataset 2A [74] (called the SMR194

dataset for the remainder of the manuscript). The data consists of four classes of imagined move-195

ments of left and right hands, feet and tongue recorded from 9 subjects. The EEG data were196

originally recorded using 22 Ag/AgCl electrodes, sampled at 250 Hz and bandpass filtered between197

0.5 and 100Hz. We resampled the timeseries to 128 Hz, and follow the same EEG pre-processing198

procedure as described in [32], using software that was provided by the authors; a brief summary199

is given here. The data were causally filtered using a third-order Butterworth filter in the 4-40Hz200

frequency band to minimize the influence of class-discriminative eye movements. The EEG signals201

were then standardized with an exponential moving average window with a decay factor of 0.999202

(further details can be found in Section A.7 of [32]).203

For both the training and test sets we epoched the data at [0.5, 2.5] seconds post cue onset (the204

same window which was used in [40, 45]). Note that we make predictions for only this time range205

on the test set. We perform a four-class classification using accuracy as the summary measure.206

2.2 Classification Methods207

2.2.1 EEGNet: Compact CNN Architecture208

Here we introduce EEGNet, a compact CNN architecture for EEG-based BCIs that (1) can be209

applied across several different BCI paradigms, (2) can be trained with very limited data and (3)210

can produce neurophysiologically interpretable features. A visualization and full description of the211

EEGNet model can be found in Figure 1 and Table 2, respectively, for EEG trials, collected at212

128Hz sampling rate, having C channels and T time samples. We fit the model using the Adam213

optimizer, using default parameters as described in [75], minimizing the categorical cross-entropy214

loss function. We run 500 training iterations (epochs) and perform validation stopping, saving the215

model weights which produced the lowest validation set loss. All models were trained on an NVIDIA216

Quadro M6000 GPU, with CUDA 9 and cuDNN v7, in Tensorflow [76], using the Keras API [77].217

We omit the use of bias units in all convolutional layers. Note that, while all convolutions are one-218

dimensional, we use two-dimensional convolution functions for ease of software implementation.219

Our software implementation can be found at https://github.com/vlawhern/arl-eegmodels.220

• In Block 1, we perform two convolutional steps in sequence. First, we fit F1 2D convolutional221

filters of size (1, 64), with the filter length chosen to be half the sampling rate of the data222
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Figure 1: Overall visualization of the EEGNet architecture. Lines denote the convolutional kernel
connectivity between inputs and outputs (called feature maps) . The network starts with a temporal
convolution (second column) to learn frequency filters, then uses a depthwise convolution (middle
column), connected to each feature map individually, to learn frequency-specific spatial filters. The
separable convolution (fourth column) is a combination of a depthwise convolution, which learns a
temporal summary for each feature map individually, followed by a pointwise convolution, which
learns how to optimally mix the feature maps together. Full details about the network architecture
can be found in Table 2.

(here, 128Hz), outputting F1 feature maps containing the EEG signal at different band-pass223

frequencies. Setting the length of the temporal kernel at half the sampling rate allows for224

capturing frequency information at 2Hz and above. We then use a Depthwise Convolution [43]225

of size (C, 1) to learn a spatial filter. In CNN applications for computer vision the main226

benefit of a depthwise convolution is reducing the number of trainable parameters to fit, as227

these convolutions are not fully-connected to all previous feature maps (see Figure 1 for an228

illustration). Importantly, when used in EEG-specific applications, this operation provides a229

direct way to learn spatial filters for each temporal filter, thus enabling the efficient extraction230

of frequency-specific spatial filters (see the middle column of Figure 1). A depth parameter231

D controls the number of spatial filters to learn for each feature map (D = 1 is shown in232

Figure 1 for illustration purposes). This two-step convolutional sequence is inspired in part233

by the Filter-Bank Common Spatial Pattern (FBCSP) algorithm [78] and is similar in nature234

to another decomposition technique, Bilinear Discriminant Component Analysis [79]. We235

keep both convolutions linear as we found no significant gains in performance when using236

nonlinear activations. We apply Batch Normalization [80] along the feature map dimension237

before applying the exponential linear unit (ELU) nonlinearity [81]. To help regularize or238

model, we use the Dropout technique [82]. We set the dropout probability to 0.5 for within-239

subject classification to help prevent over-fitting when training on small sample sizes, whereas240

we set the dropout probability to 0.25 in cross-subject classification, as the training set sizes241
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Block Layer # filters size # params Output Activation Options

1 Input (C, T)

Reshape (1, C, T)

Conv2D F1 (1, 64) 64 ∗ F1 (F1, C, T) Linear mode = same

BatchNorm 2 ∗ F1 (F1, C, T)

DepthwiseConv2D D * F1 (C, 1) C ∗D ∗ F1 (D * F1, 1, T) Linear mode = valid, depth = D, max norm = 1

BatchNorm 2 ∗D ∗ F1 (D * F1, 1, T)

Activation (D * F1, 1, T) ELU

AveragePool2D (1, 4) (D * F1, 1, T // 4)

Dropout* (D * F1, 1, T // 4) p = 0.25 or p = 0.5

2 SeparableConv2D F2 (1, 16) 16 ∗D ∗ F1 + F2 ∗ (D ∗ F1) (F2, 1, T // 4) Linear mode = same

BatchNorm 2 ∗ F2 (F2, 1, T // 4)

Activation (F2, 1, T // 4) ELU

AveragePool2D (1, 8) (F2, 1, T // 32)

Dropout* (F2, 1, T // 32) p = 0.25 or p = 0.5

Flatten (F2 * (T // 32))

Classifier Dense N * (F2 * T // 32) N Softmax max norm = 0.25

Table 2: EEGNet architecture, where C = number of channels, T = number of time points, F1 =
number of temporal filters, D = depth multiplier (number of spatial filters), F2 = number of
pointwise filters, and N = number of classes, respectively. For the Dropout layer, we use p = 0.5
for within-subject classification and p = 0.25 for cross-subject classification (see Section 2.1.1 for
more details)

are much larger (see Section 2.3 for more details on our within- and cross-subject analyses).242

We apply an average pooling layer of size (1, 4) to reduce the sampling rate of the signal to243

32Hz. We also regularize each spatial filter by using a maximum norm constraint of 1 on its244

weights; ‖w‖2 < 1.245

• In Block 2, we use a Separable Convolution, which is a Depthwise Convolution (here, of246

size (1, 16), representing 500ms of EEG activity at 32Hz) followed by F2 (1, 1) Pointwise247

Convolutions [43]. The main benefits of separable convolutions are (1) reducing the number of248

parameters to fit and (2) explicitly decoupling the relationship within and across feature maps249

by first learning a kernel summarizing each feature map individually, then optimally merging250

the outputs afterwards. When used for EEG-specific applications this operation separates251

learning how to summarize individual feature maps in time (the depthwise convolution) with252

how to optimally combine the feature maps (the pointwise convolution). This operation is also253

particularly useful for EEG signals as different feature maps may represent data at different254

time-scales of information. In our case we first learn a 500 ms “summary” of each feature255

map, then combine the outputs afterwards. An Average Pooling layer of size (1, 8) is used256

for dimension reduction.257

• In the classification block, the features are passed directly to a softmax classification with N258

units, N being the number of classes in the data. We omit the use of a dense layer for feature259

aggregation prior to the softmax classification layer to reduce the number of free parameters260

in the model, inspired by the work in [83].261

We investigate several different configurations of the EEGNet architecture by varying the num-262

ber of filters, F1, and the number of spatial filters per temporal filter, D to learn. We set F2 = D∗F1263
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Trial Length (sec) DeepConvNet ShallowConvNet EEGNet-4,2 EEGNet-8,2

P300 1 174,127 104,002 1,066 2,258
ERN 1.25 169,927 91,602 1,082 2,290
MRCP 1.5 175,727 104,722 1,098 2,322
SMR* 2 152,219 40,644 796 1,716

Table 3: Number of trainable parameters per model and per dataset for all CNN-based models. We
see that the EEGNet models are up to two orders of magnitude smaller than both DeepConvNet
and ShallowConvNet across all datasets. Note that we use a temporal kernel length of 32 samples
for the SMR dataset as the data were high-passed at 4Hz.

(the number of temporal filters along with their associated spatial filters from Block 1) for the du-264

ration of the manuscript, although in principle F2 can take any value; F2 < D ∗ F1 denotes a265

compressed representation, learning fewer feature maps than inputs, whereas F2 > D ∗ F1 denotes266

an overcomplete representation, learning more feature maps than inputs. We use the notation267

EEGNet-F1,D to denote the number of temporal and spatial filters to learn; i.e.: EEGNet-4,2268

denotes learning 4 temporal filters and 2 spatial filters per temporal filter.269

2.2.2 Comparison with existing CNN Approaches270

We compare the performance of EEGNet against the DeepConvNet and ShallowConvNet models271

proposed by [32]; full table descriptions of both models can be found in the Appendix. We imple-272

mented these models in Tensorflow and Keras, following the descriptions found in the paper. As273

their architectures were originally designed for 250Hz EEG signals (as opposed to 128Hz signals274

used here) we divided the lengths of temporal kernels and pooling layers in their architectures by275

2 to correspond approximately to the sampling rate used in our models. We train these models in276

the same way we train the EEGNet model (see Section 2.2.1).277

The DeepConvNet architecture consists of five convolutional layers with a softmax layer for278

classification (see Figure 1 of [32]). The ShallowConvNet architecture consists of two convolutional279

layers (temporal, then spatial), a squaring nonlinearity (f(x) = x2), an average pooling layer and280

a log nonlinearity (f(x) = log(x)). We would like to emphasize that the ShallowConvNet archi-281

tecture was designed specifically for oscillatory signal classification (by extracting features related282

to log band-power); thus, it may not work well on ERP-based classification tasks. However, the283

DeepConvNet architecture was designed to be a general-purpose architecture that is not restricted284

to specific feature types [32], and thus it serves as a more valid comparison to EEGNet. Table 3285

shows the number of trainable parameters per model across all CNN models.286

2.2.3 Comparison with Traditional Approaches287

We also compare the performance of EEGNet to that of the best performing traditional approach288

for each individual paradigm. For all ERP-based data analyses (P300, ERN, MRCP) the tradi-289

tional approach is the approach which won the Kaggle BCI Competition (code and documenta-290
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tion at http://github.com/alexandrebarachant/bci-challenge-ner-2015), which uses a combination291

of xDAWN Spatial Filtering [84], Riemannian Geometry [85, 86], channel subset selection and L1292

feature regularization (referred to as xDAWN + RG for the remainder of the manuscript). Here293

we provide a summary of the approach, which is done in five steps:294

1. Train two set of 5 xDAWN spatial filters, one set for each class of a binary classification task,295

using the ERP template concatenation method as described in [86,87].296

2. Perform EEG electrode selection through backward elimination [88] to keep only the most297

relevant 35 channels.298

3. Project the covariance matrices onto the tangent space using the log-euclidean metric [85,89].299

4. Perform feature normalization using an L1 ratio of 0.5, signifying an equal weight for L1 and300

L2 penalties. An L1 penalty encourages the sum of the absolute values of the parameters to301

be small, whereas an L2 penalty encourages the sum of the squares of the parameters to be302

small (a theoretical overview of these penalties can be found in [90]).303

5. Perform classification using an Elastic Net regression.304

We use the same xDAWN+RG model parameters across all comparisons (P300, ERN, MRCP)305

with the exception of the initial number of EEG channels to use, which was set to 56 for ERN306

and 64 for P300 and MRCP. While the original solution used an ensemble of bagged classifiers,307

for this analysis we only compared a single model with this approach to a single EEGNet model308

on identical training and test sets, as we expect any gains from ensemble learning to benefit both309

approaches equally. The original solution also used a set of “meta features” that were specific to310

that data collection. As the goal of this work is to investigate a general-purpose CNN model for311

EEG-based BCIs, we omitted the use of these features as they are specific to that particular data312

collection.313

For oscillatory-based classification of SMR, the traditional approach is our own implementation314

of the One-Versus-Rest (OVR) filter-bank common spatial pattern (FBCSP) algorithm as described315

in [78]. Here we provide a brief summary of our approach:316

1. Bandpass filter the EEG signal into 9 non-overlapping filter banks in 4Hz steps, starting at317

4Hz: 4-8Hz, 8-12Hz, ..., 36-40Hz.318

2. As the classification problem is multi-class, we use OVR classification, which requires that319

we train a classifier for all pairs of OVR combinations, which there are 4 here (class 1 vs all320

others, class 2 vs all others, etc). We train 2 CSP filter pairs (4 filters total) for each filter321

bank on the training data using the auto-covariance shrinkage method by [91]. This will give322

a total of 36 features (9 filter banks × 4 CSP filters) for each trial and each OVR combination.323

3. Train an elastic-net logistic regression classifier [92] for each OVR combination. We set the324

elastic net penalty α = 0.95.325
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4. Find the optimal λ value for the elastic-net logistic regression that maximizes the validation326

set accuracy by evaluating the trained classifiers on a held-out validation set. The multi-class327

label for each trial is the classifier that produces the highest probability among the 4 OVR328

classifiers.329

5. Apply the trained classifiers to the test set, using the λ values obtained in Step 4.330

Note that this approach differs slightly from the original technique as proposed in [78], where they331

use a Naive Bayes Parzen Window classifier. We opted to use an elastic net logistic regression for332

ease of implementation, and the fact that it has been used in existing software implementations of333

FBCSP (for example, in BCILAB [93]).334

2.3 Data Analysis335

Classification results are reported for two sets of analyses: within-subject and cross-subject. Within-336

subject classification uses a portion of the subjects data to train a model specifically for that subject,337

although cross-subject classification uses the data from other subjects to train a subject-agnostic338

model. While within-subject models tend to perform better than cross-subject models on a variety339

of tasks, there is ongoing research investigating techniques to minimize (or possibly eliminate) the340

need for subject-specific information to train robust systems [45,52].341

For within-subject, we use four-fold blockwise cross-validation, where two of the four blocks342

are chosen to be the training set, one block as the validation set, and the final block as testing.343

We perform statistical testing using a repeated-measures Analysis of Variance (ANOVA), modeling344

classification results (AUC for P300/MRCP/ERN and Classification Accuracy for SMR) as the345

response variable with subject number and classifier type as factors. For cross-subject analysis in346

P300 and MRCP we choose, at random, 4 subjects for the validation set, one subject for the test347

set, and all remaining subjects for the training set (see Table 1 for number of subjects per dataset).348

This process was repeated 30 times, producing 30 different folds. We follow the same procedure349

for the ERN dataset, except we use the 10 test subjects from the original Kaggle Competition as350

the test set for each fold. We perform statistical testing using a one-way Analysis of Variance,351

using classifier type as the factor. For the SMR dataset, we partitioned the data as follows: For352

each subject, select the training data from 5 other subjects at random to be the training set and353

the training data from the remaining 3 subjects to be the validation set. The test set remains354

the same as the original test set for the competition. Note that this enforces a fully cross-subject355

classification analysis as we never use the test subjects’ training data. This process is repeated 10356

times for each subject, creating 90 different folds. The mean and standard error of classification357

performance were calculated over the 90 folds. We perform statistical testing for this analysis using358

the same testing procedure as the within-subject analysis.359

When training both the within-subject and cross-subject models, we apply a class-weight to360

the loss function whenever the data is imbalanced (unequal number of trials for each class). The361

class-weight we apply is the inverse of the proportion in the training data, with the majority class362

set to 1. For example, in the P300 dataset, there is a 5.6:1 odds between non-targets and targets363
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(Table 1) . In this case the class-weight for non-targets was set to 1, while the class-weight for364

targets was set to 6 (when the odds are a fraction, we take the next highest integer). This procedure365

was applied to the P300 and ERN datasets only, as these were the only datasets where significant366

class imbalance was present.367

Note that for the SMR analysis, we set the temporal kernel length to be 32 samples long (as368

opposed to 64 samples long as given in Table 2) since the data were high-passed at 4Hz.369

2.4 EEGNet Feature Explainability370

The development of methods for enabling feature explainability from deep neural networks has371

become an active research area over the past few years, and has been proposed as an essential372

component of a robust model validation procedure, to ensure that the classification performance373

is being driven by relevant features as opposed to noise or artifacts in the data [16, 94–100]. We374

present three different approaches for understanding the features derived by EEGNet:375

1. Summarizing averaged outputs of hidden unit activations: This approach focuses376

on summarizing the activations of hidden units at layers specified by the user. In this work377

we choose to summarize the hidden unit activations representing the data after the depth-378

wise convolution (the spatial filter operation in EEGNet). Because the spatial filters are tied379

directly to a particular temporal filter, they provide additional insights into the spatial local-380

ization of narrow-band frequency activity. Here we summarize the spatially-filtered data by381

calculating the difference in averaged time-frequency representations between classes, using382

Morlet wavelets [101].383

2. Visualizing the convolutional kernel weights: This approach focuses on directly visual-384

izing and interpreting the convolutional kernel weights from the model. Generally speaking,385

interpreting the convolutional kernel weights is very difficult due to the cross-filter-map con-386

nectivity between any two layers. However, because EEGNet limits the connectivity of the387

convolutional layers (using depthwise and separable convolutions), it is possible to interpret388

the temporal convolution as narrow-band frequency filters and the depthwise convolution as389

frequency-specific spatial filters.390

3. Calculating single-trial feature relevance on the classification decision: This ap-391

proach focuses on calculating, on a single-trial basis, the relevance of individual features on392

the resulting classification decision. Positive values of relevance denote evidence supporting393

the outcome, while negative values of relevance denote evidence against the outcome. In394

our analysis we used DeepLIFT with the Rescale rule [98], as implemented in [99], to calcu-395

late single-trial EEG feature relevance. DeepLIFT is a gradient-based relevance attribution396

method that calculates relevance values per feature relative to a “reference” input (here, an397

input of zeros, as is suggested in [98]), and is a technique similar to Layerwise Relevance398

Propagation (LRP) which has been used previously for EEG analysis [33] (a summary of399

gradient-based relevance attribution methods can be found in [99]). This analysis can be400

used to elucidate feature relevance from high-confidence versus low-confidence predictions,401
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Figure 2: 4-fold within-subject classification performance for the P300, ERN and MRCP datasets
for each model, averaged over all folds and all subjects. Error bars denote 2 standard errors of
the mean. We see that, while there is minimal difference between all the CNN models for the
P300 dataset, there are significant differences in the MRCP dataset, with both EEGNet models
outperforming all other models. For the ERN dataset we also see both EEGNet models performing
better than all others (p < 0.05).

and can be used to confirm that the relevant features learned are interpretable, as opposed402

to noise or artifact features.403

3 Results404

3.1 Within-Subject Classification405

We compare the performance of both the CNN-based reference algorithms (DeepConvNet and406

ShallowConvNet) and the traditional approach (xDAWN+RG for P300/MRCP/ERN and FBCSP407

for SMR) with EEGNet-4,2 and EEGNet-8,2. Within-subject four-fold cross-validation results408

across all algorithms for P300, MRCP and ERN datasets are shown in Figure 2. We observed,409

across all paradigms, that there was no statistically significant difference between EEGNet-4,2410

and EEGNet-8,2 (p > 0.05), indicating that the increase in model complexity did not statistically411

improve classification performance. For the P300 dataset, all CNN-based models significantly out-412

perform xDAWN+RG (p < 0.05) while not performing significantly different amongst themselves.413

For the ERN dataset, EEGNet-8,2 outperforms DeepConvNet, ShallowConvNet and xDAWN+RG414

(p < 0.05), while EEGNet-4,2 outperforms DeepConvNet and ShallowConvNet (p < 0.05). The415

biggest difference observed among all the approaches is in the MRCP dataset, where both EEGNet416

models statistically outperform all others by a significant margin (DeepConvNet, ShallowConvNet417

and xDAWN+RG, p < 0.05 for each comparison).418

Four-fold cross-validation results for the SMR dataset are shown in Figure 3. Here we see419

the performances of ShallowConvNet and FBCSP are very similar, replicating previous results as420

reported in [32], while DeepConvNet performance is significantly lower. We also see that EEGNet-421
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      4-fold Within-Subject Classification Performance: SMR

FBCSP
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EEGNet-8,2

Figure 3: 4-fold within-subject classification performance for the SMR dataset for each model,
averaged over all folds and all subjects. Error bars denote 2 standard errors of the mean. Here we
see DeepConvNet statistically performed worse than all other models (p < 0.05). ShallowConvNet
and EEGNet-8,2 performed similarly to that of FBCSP.

8,2 performance is similar to FBCSP as well.422

3.2 Cross-Subject Classification423

Cross-subject classification results across all algorithms for P300, MRCP and ERN datasets are424

shown in Figure 4. Similar to the within-subject analysis, we observed no statistical difference425

between EEGNet-4,2 and EEGNet-8,2 across all datasets (p > 0.05). For the P300 dataset, all426

CNN-based models significantly outperform xDAWN+RG (p < 0.05) while not performing sig-427

P300 MRCP ERN
0.5

0.6

0.7

0.8

0.9

1

A
U

C

Cross-Subject Classification Performance

xDAWN+RG

DeepConvNet

ShallowConvNet

EEGNet-4,2

EEGNet-8,2

Figure 4: Cross-Subject classification performance for the P300, ERN and MRCP datasets for each
model, averaged for 30 folds. Error bars denote 2 standard errors of the mean. For the P300 and
MRCP datasets there is minimal difference between the DeepConvNet and the EEGNet models,
with both models outperforming ShallowConvNet. For the ERN dataset the reference algorithm
(xDAWN + RG) significantly outperforms all other models.
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Figure 5: Cross-Subject classification performance for the SMR for each model, averaged over all
folds and all subjects. Error bars denote 2 standard errors of the mean. We see that all CNN-based
models perform similarly, while slightly outperforming FBCSP.

nificantly different amongst themselves. For the MRCP dataset EEGNet-8,2 and DeepConvNet428

significantly outperform ShallowConvNet (p < 0.05). We also see that both DeepConvNet and429

ShallowConvNet performance is better when compared to its within-subject performance for the430

MRCP dataset. For the ERN dataset, xDAWN + RG outperforms all CNN models (p < 0.05).431

Cross-subject classification results for the SMR dataset are shown in Figure 5, where we found no432

significant difference in performance across all CNN-based models (p > 0.05).433

3.3 EEGNet Feature Characterization434

We illustrate three different approaches to characterize the features learned by EEGNet: (1) Sum-435

marizing averaged outputs of hidden unit activations, (2) visualizing convolutional kernel weights,436

and (3) calculating single-trial feature relevances on classification decision. We illustrate Approach437

1 on the P300 dataset for a cross-subject trained EEGNet-4,1 model. We chose to analyze the filters438

from the P300 dataset due to the fact that multiple neurophysiological events occur simultaneously:439

participants were told to press a button with their dominant hand whenever a target image ap-440

peared on the screen. Because of this, target trials contain both the P300 event-related potential441

as well as the alpha/beta desynchronizations in contralateral motor cortex due to button presses.442

Here we were interested in whether or not the EEGNet architecture was capable of separating out443

these confounding events. We were also interested in quantifying the classification performance of444

the architecture whenever specific filters were removed from the model.445

Figure 6 shows the spatial topographies of the four filters along with an average wavelet time-446

frequency difference, calculated using Morlet wavelets [101], between all target trials and all non-447

target trials. Here we see four distinct filters appear. The time-frequency analysis of Filter 1 shows448

an increase in low-frequency power approximately 500ms after image presentation, followed by449

desynchronizations in alpha frequency. As nearly all subjects in the P300 dataset are right-handed,450

we also see significant activity along the left motor cortex. Time-frequency analysis of Filter 2451
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A

B

Figure 6: Visualization of the features derived from an EEGNet-4,1 model configuration for one
particular cross-subject fold in the P300 dataset. (A) Spatial topoplots for each spatial filter. (B)
The mean wavelet time-frequency difference between target and non-target trials for each individual
filter.

appears to show a significant theta-beta relationship; while increases in theta activity have been452

previously noted in the P300 literature in response to targets [102], a relationship between theta453

and beta has not previously been noted. The time-frequency difference for Filter 4 appears to454

correspond with the P300, with an increase low-frequency power approximately 350ms after image455

presentation.456

Filters Removed Test Set AUC

(1) 0.8866
(2) 0.9076
(3) 0.8910
(4) 0.8747

(1, 2) 0.8875
(1, 3) 0.8593
(1, 4) 0.8325
(2, 3) 0.8923
(2, 4) 0.8721
(3, 4) 0.8206

(1, 2, 3) 0.8637
(1, 2, 4) 0.8202
(1, 3, 4) 0.7108
(2, 3, 4) 0.7970
None 0.9054

Table 4: Performance of a cross-subject trained EEGNet-4,1 model when removing certain filters
from the model, then using the model to predict the test set for one randomly chosen fold of the
P300 dataset. AUC values in bold denote the best performing model when removing 1, 2 or 3 filters
at a time. As the number of filters removed increases, we see decreases in classification performance,
although the magnitude of the decrease depends on which filters are removed.

16

Page 16 of 30AUTHOR SUBMITTED MANUSCRIPT - JNE-102416.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



S
p

a
t.

 F
il
te

r
 1

S
p

a
t.

 F
il
te

r
 2

Figure 7: Visualization of the features derived from a within-subject trained EEGNet-8,2 model for
Subject 3 of the SMR dataset. Each of the 8 columns shows the learned temporal kernel for a 0.25
second window (top) with its two associated spatial filters (bottom two). We see that, while many
of the temporal filters are isolating slower-wave activity, the network identifies a higher-frequency
filter at approximately 32Hz (Temp. Filter 3, which shows 8 cycles in a 0.25 s window).

We also conducted a feature ablation study, where we iteratively removed a set of filters (by457

replacing the filters with zeros) and re-applied the model to predict trials in the test set. We do this458

for all combinations of the four filters. Classification results for this ablation study are shown in459

Table 4. We see that test set performance is minimally impacted by the removal of any single filter,460

with the largest decrease occurring when removing Filter 4. As expected, when removing pairs of461

filters the decrease in performance is more pronounced, with the largest decrease observed when462

removing Filters 3 and 4. Removing Filters 2 and 3 results in practically no change in classification463

performance when compared to the full model, suggesting that the most important features in464

this task are being captured by Filters 1 and 4. This finding is further reinforced when looking465

at classification performance when three filters are removed; a model that contains only Filter 4466

(0.8637 AUC) performs fairly well when compared to models that contain only Filter 2 (0.7108467

AUC) or Filter 1 (0.7970 AUC).468

Figure 7 shows the filters learned for the EEGNet-8,2 model for a within-subject classification469

of Subject 3 for the SMR dataset. Each column of this figure denotes the learned temporal kernel470

(top row) with its two associated spatial filters (bottom two rows). Note that we are learning471

temporal filters of length 32 samples, which correspond to 0.25 seconds in time; hence, we estimate472

the frequency for each temporal filter as four times the number of observed cycles. Here we see that473

EEGNet-8,2 learns both slow-frequency activity at approximately 12Hz (Filters 1, 2, 6 and 8, which474

show three cycles in a 0.25 s window) and high-frequency activity at approximately 32Hz (Filter 3,475

which show 8 cycles). Figure 8 compares the spatial filters associated with 8-12Hz frequency band476

learned by EEGNet-8,2 with the spatial filters learned by FBCSP in the 8-12Hz filter-bank for each477

of the four OVR combinations. For ease of description we will use the notation X-Y to denote the478

row-column filter. Here we see many of the filters are strongly positively correlated across models479

(i.e.: the 1-1 filter of EEGNet-8,2 with the 3-1 filter for FBCSP (ρ = 0.93) and the 2-1 filter of480

EEGNet-8,2 with the 3-4 filter of FBCSP (ρ = 0.83)), while some are strongly negatively correlated481

(the 3-1 filter of EEGNet-8,2 with the 1-1 filter of FBCSP (ρ = −0.93)), indicating a similar filter482

up to a sign ambiguity.483

17

Page 17 of 30 AUTHOR SUBMITTED MANUSCRIPT - JNE-102416.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



A                                                B

Spatial Filter 1             Spatial Filter 2              Spatial Filter 3              Spatial Filter 4 Spatial Filter 1                      Spatial Filter 2     

Left hand vs. all                                                                                                                                                       Temporal Filter 1

Right hand vs. all                                                                                                                                                     Temporal Filter 2

Both feet vs. all                                                                                                                                                      Temporal Filter 6

  Tongue vs. all                                                                                                                                                        Temporal Filter 8

FBCSP 8-12Hz Spatial Filters                                        EEGNet-8,2 12Hz Spatial Filters

Figure 8: Comparison of the 4 spatial filters learned by FBCSP in the 8-12Hz filter bank for each
OVR class combination (A) with the spatial filters learned by EEGNet-8,2 (B) for 4 temporal filters
that capture 12Hz frequency activity for Subject 3 of the SMR dataset (Temporal Filters 1, 2, 6
and 8, see Figure 7). We see that, for this subject, similar filters appear across both FBCSP and
EEGNet-8,2.

Figure 9 shows the single-trial feature relevances for EEGNet-8,2, calculated using DeepLIFT,484

for three three different test trials for one cross-subject fold of the MRCP dataset. Here we see485

that the high-confidence predictions (Figure 9A and Figure 9B, for left and right finger movement,486

respectively) both correctly show the contralateral motor cortex relevance as expected, whereas for487

a low-confidence prediction (Figure 9C), the feature relevance is more broadly distributed, both in488

time and in space on the scalp.489

Figure 10 shows an additional example of using DeepLIFT to analyze feature relevance for490

a cross-subject trained EEGNet-4,2 model for one test subject of the ERN dataset. Margaux491

et. al. [57] previously noted that the average ERP for correct feedback trials has an earlier peak492

positive potential, corresponding to approximately 325 ms, whereas the positive peak potential493

for incorrect trials occurs slightly later, approximately 475 ms. Here we see the same temporal494

difference in the timing of the peak positive potential for incorrect feedback trials (vertical line in495

top row of Figure 10) and correct feedback trials (vertical line in bottom row of Figure 10). We also496

see the DeepLIFT feature relevances align very closely to that of the peak positive potential for497

both classes, suggesting that the network has focused on the peak positive potential as the relevant498

feature for ERN classification. This finding supports results previously reported in [57], where they499

showed a strong positive correlation between the amplitude of the peak positive potential and the500

accuracy of error detection.501
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A B C

Figure 9: (Top row) Single-trial EEG feature relevance for a cross-subject trained EEGNet-8,2
model, using DeepLIFT, for three different test trials of the MRCP dataset: (A) a high-confidence,
correct prediction of left finger movement, (B) a high-confidence, correct prediction of right finger
movement and (C) a low-confidence, incorrect prediction of left finger movement. Titles include the
true class label and the predicted probability of that label. (Bottom row) Spatial topoplots of the
relevances at two time points: approximately 50 ms and 150 ms after button press. As expected,
the high-confidence trials show the correct relevances corresponding to contralateral motor cortex
for left (A) and right (B) button presses, respectively. For the low-confidence trial we see the
relevances are more mixed and broadly distributed, without a clear spatial localization to motor
cortices.

4 Discussion502

In this work we proposed EEGNet, a compact convolutional neural network for EEG-based BCIs503

that can generalize across different BCI paradigms in the presence of limited data and can produce504

interpretable features. We evaluated EEGNet against the state-of-the-art approach for both ERP505

and Oscillatory-based BCIs across four EEG datasets: P300 visual-evoked potentials, Error-Related506

Negativity (ERN), Movement-Related Cortical Potentials (MRCP) and Sensory Motor Rhythms507

(SMR). To the best of our knowledge, this represents the first work that has validated the use of a508

single network architecture across multiple BCI datasets, each with their own feature characteristics509

and data set sizes. Our work introduced the use of Depthwise and Separable Convolutions [43] for510

EEG signal classification, and showed that they can be used to construct an EEG-specific model511

which encapsulates well-known EEG feature extraction concepts. Finally, through the use of feature512

visualization and ablation analysis, we show that neurophysiologically interpretable features can513

be extracted from the EEGNet model. This last finding is particularly important, as it is a critical514

component to understanding the validity and robustness of CNN model architectures not just for515

EEG [32,33], but for CNN architectures in general [16,95,100].516

The learning capacity of CNNs comes in part from their ability to automatically extract intricate517

feature representations from raw data. However, since the features are not hand-designed by518

human engineers, understanding the meaning of those features poses a significant challenge in519
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Figure 10: Single-trial EEG feature relevance for a cross-subject trained EEGNet-4,2 model, using
DeepLIFT, for the one test subject of the ERN dataset. (Top Row) Feature relevances for three
correctly predicted trials of incorrect feedback, along with its predicted probability P . (Bottom
Row) Same as the top row but for three correctly predicted trials of correct feedback. The black
line denotes the average ERP, calculated at channel Cz, for incorrect feedback trials (top row) and
for correct feedback trials (bottom row). The thin vertical line denotes the positive peak of the
average ERP waveform. Here we see feature relevances coincide strongly with the positive peak of
the average ERP waveform for each trial. We also see the positive peak occurring slightly earlier
for correct feedback trials versus incorrect feedback trials, consistent with the results in [57].

producing interpretable models [96]. This is especially true when CNNs are used for the analysis520

of EEG data where features from neural signals are often non-stationary and corrupted by noise521

artifacts [103,104]. In this study, we illustrated three different approaches for visualizing the features522

learned by EEGNet: (1) analyzing spatial filter outputs, averaged over trials, on the P300 dataset,523

(2) visualizing the convolutional kernel weights on the SMR dataset and comparing them to the524

weights learned by FBCSP, and (3) performing single-trial relevance analysis on the MRCP and525

SMR datasets. For the ERN dataset we compared single-trial feature relevances to averaged ERPs526

and showed that relevant features coincided with the peak of the positive potential for correct and527

incorrect feedback trials, which has been shown in previous literature to be positively correlated to528

classifier performance [57]. In addition, we conducted a feature ablation study to understand the529

impact of a classification decision on the presence or absence of a particular feature on the P300530

dataset. In each of these analyses, we showed that EEGNet was capable of extracting interpretable531

features that generally corresponded to known neurophysiological phenomena.532

Generally speaking, the classification performance of DeepConvNet and EEGNet were similar533

across all cross-subject analyses, whereas DeepConvNet performance was lower across nearly all534

within-subject analyses (with the exception of P300). One possible explanation for this discrepancy535

is the amount of training data used to train the model; in cross-subject analyses the training set536

sizes were about 10-15 times larger than that of within-subject analyses. This suggests that Deep-537

ConvNet is more data-intensive compared to EEGNet, an unsurprising result given that the model538
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size of DeepConvNet is two orders of magnitude larger than EEGNet (see Table 3). We believe this539

intuition is consistent with the findings originally reported by the developers of DeepConvNet [32],540

where they state that a training data augmentation strategy was needed to obtain good classifica-541

tion performance on the SMR dataset. In contrast to their work, we show that EEGNet performed542

well across all tested datasets without the need for data augmentation, making the model simpler543

to use in practice.544

In general we found that, both in within- and cross-subject analyses, that ShallowConvNet545

tended to perform worse on the ERP BCI datasets than on the oscillatory BCI dataset (SMR),546

while the opposite behavior was observed with DeepConvNet. We believe this is due to the fact547

that the ShallowConvNet architecture was designed specifically to extract log bandpower features;548

in situations where the dominant feature is signal amplitude (as is the case in many ERP BCIs),549

ShallowConvNet performance tended to suffer. The opposite situation occurred with DeepConvNet;550

as its architecture was not designed to extract frequency features, its performance was lower in551

situations where frequency power is the dominant feature. In contrast, we found that EEGNet552

performed just as well as ShallowConvNet in SMR classification and just as well as DeepConvNet553

in ERP classification (and outperforming in the case of within-subject MRCP, ERN and SMR554

classifications), suggesting that EEGNet is robust enough to learn a wide variety of features over a555

range of BCI tasks.556

The severe underperformance of ShallowConvNet on within-subject MRCP classification was557

unexpected, given the similarity in neural responses between the MRCP and SMR, and the fact558

that ShallowConvNet performed well on SMR. This discrepancy in performance is not due to the559

amount of training data used, as within-subject MRCP classification has approximately 700 training560

trials, evenly split among left and right finger movements, whereas the SMR dataset has only 192561

training trials, evenly split among four classes. In addition, we did not observe large deviations562

in ShallowConvNet performance on the other datasets (P300 and ERN). In fact, ShallowConvNet563

performed fairly well on within-subject ERN classification, even though this dataset is the smallest564

among all datasets used in this study (only having 170 training trials total). Determining the565

underlying source of this phenomena will be explored in future research.566

Deep Learning models for EEG generally employ one of three input styles, depending on their567

targeted application: (1) the EEG signal of all available channels, (2) a transformed EEG signal568

(generally a time-frequency decomposition) of all available channels [37] or (3) a transformed EEG569

signal of a subset of channels [38]. Models that fall in (2) generally see a significant increase in data570

dimensionality, thus requiring either more data or more model regularization (or both) to learn571

an effective feature representation. This introduces more hyperparameters that must be learned,572

increasing the potential variability in model performance due to hyperparameter misspecification.573

Models that fall in (3) generally require a priori knowledge about the channels to select. For574

example, the model proposed in [38] uses the time-frequency decomposition of channels Cz, C3575

and C4 as the inputs for a motor imagery classification task. This channel selection is intentional,576

given the fact that neural responses to motor actions (the sensory motor rhythm) are observed577

strongest at those channels and are easily observed through a time-frequency analysis. Also, by578

only working with three channels, the authors reduce the significant increase in dimensionality579

of the data. While this approach works well if the feature of interest is known beforehand, this580

approach is not guaranteed to work well in other applications where the features are not observed581
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at those channels, limiting the overall utility of this approach. We believe models that fall in (1),582

such as EEGNet and others [28, 30, 31], offer the best tradeoff between input dimensionality and583

the flexibility to discover relevant features by providing all available channels. This is especially584

important as BCI technologies evolve into novel application spaces, as the features needed for these585

future BCIs may not be known beforehand [3–5,10–12].586
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5 Appendix597

5.1 DeepConvNet and ShallowConvNet architectures598

The DeepConvNet and ShallowConvNet architectures are given in Tables 5 and 6, respectively. The599

DeepConvNet was designed to be a general-purpose architecture that is not restricted to specific600

feature types, whereas ShallowConvNet is designed specifically for oscillatory signal classification.601

Layer # filters size # params Activation Options

Input (C, T)

Reshape (1, C, T)

Conv2D 25 (1, 5) 150 Linear mode = valid, max norm = 2

Conv2D 25 (C, 1) 25 * 25 * C + 25 Linear mode = valid, max norm = 2

BatchNorm 2 * 25 epsilon = 1e-05, momentum = 0.1

Activation ELU

MaxPool2D (1, 2)

Dropout p = 0.5

Conv2D 50 (1, 5) 25 * 50 * C + 50 Linear mode = valid, max norm = 2

BatchNorm 2 * 50 epsilon = 1e-05, momentum = 0.1

Activation ELU

MaxPool2D (1, 2)

Dropout p = 0.5

Conv2D 100 (1, 5) 50 * 100 * C + 100 Linear mode = valid, max norm = 2

BatchNorm 2 * 100 epsilon = 1e-05, momentum = 0.1

Activation ELU

MaxPool2D (1, 2)

Dropout p = 0.5

Conv2D 200 (1, 5) 100 * 200 * C + 200 Linear mode = valid, max norm = 2

BatchNorm 2 * 200 epsilon = 1e-05, momentum = 0.1

Activation ELU

MaxPool2D (1, 2)

Dropout p = 0.5

Flatten

Dense N softmax max norm = 0.5

Table 5: DeepConvNet architecture, where C = number of channels, T = number of time points
and N = number of classes, respectively.
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Layer # filters size # params Activation Options

Input (C, T)

Reshape (1, C, T)

Conv2D 40 (1, 13) 560 Linear mode = same, max norm = 2

Conv2D 40 (C, 1) 40 * 40 * C Linear mode = valid, max norm = 2

BatchNorm 2 * 40 epsilon = 1e-05, momentum = 0.1

Activation square

AveragePool2D (1, 35), stride (1, 7)

Activation log

Flatten

Dropout p = 0.5

Dense N softmax max norm = 0.5

Table 6: ShallowConvNet architecture, where C = number of channels, T = number of time points
and N = number of classes, respectively. Here, the ’square’ and ’log’ activation functions are given
as f(x) = x2 and f(x) = log(x), respectively. Note that we clip the log function such that the
minimum input value is a very small number (ε = 10e−7) for numerical stability.
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