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26 12 Abstract

27

28 13 Objective: Brain computer interfaces (BCIL) enable direct communication with a computer,
29 14 using neural activity as the control signal. Thismeural signal is generally chosen from a variety of
30 15 well-studied electroencephalogram (EEG) signals. \For a given BCI paradigm, feature extractors
31 16 and classifiers are tailored to the distinct e¢haracteristics of its expected EEG control signal, lim-
32 17 iting its application to that specific signal. Convolutional Neural Networks (CNNs), which have
33 18 been used in computer vision and, speech recognition to perform automatic feature extraction
34 19 and classification, have successfully been applied to EEG-based BCls; however, they have mainly
35 20 been applied to single BCI paradigms and thus it remains unclear how these architectures gener-
36 21 alize to other paradigms. Here, we ask'if we can design a single CNN architecture to accurately
37 2 classify EEG signals frgm different BCI paradigms, while simultaneously being as compact as
38 23 possible. Approach: In this' work we introduce EEGNet, a compact convolutional neural net-
39 24 work for EEG-basedyBCIs.. Wedntroduce the use of depthwise and separable convolutions to
40 25 construct an EEG-specific model which encapsulates well-known EEG feature extraction con-
41 26 cepts for BCI. Weseompare EEGNet, both for within-subject and cross-subject classification, to
42 27 current state-of-the-arthapproaches across four BCI paradigms: P300 visual-evoked potentials,
43 28 error-relatedfmegativity responses (ERN), movement-related cortical potentials (MRCP), and
44 29 sensory metor rhythms (SMR). Results: We show that EEGNet generalizes across paradigms
45 30 better than, and achieves comparably high performance to, the reference algorithms when only
46 31 limited training data is‘available across all tested paradigms. In addition, we demonstrate three
47 32 different approaches to visualize the contents of a trained EEGNet model to enable interpreta-
48 33 tion of the learned features. Significance: Our results suggest that EEGNet is robust enough
49 34 tolearn a wide variety of interpretable features over a range of BCI tasks.Our models can be
?1) 35 found at: https://github.com/vlawhern/arl-eegmodels.

52

53 36 Keywords: Brain-Computer Interface, EEG, Deep Learning, Convolutional Neural Network,
54 37 P300, Error-Related Negativity, Sensory Motor Rhythm

55

56 1

57

58

59



oNOYTULT D WN =

38

39

40

4

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

AUTHOR SUBMITTED MANUSCRIPT - JNE-102416.R1

1 Introduction

A Brain-Computer Interface (BCI) enables direct communication with a machine via brain sig-
nals [1]. Traditionally, BCIs have been used for medical applications such as, neural eentrol of
prosthetic artificial limbs [2]. However, recent research has opened up the possibilityfor novelh BCIs
focused on enhancing performance of healthy users, often with noninvasive approaches based on
electroencephalography (EEG) [3-5]. Generally speaking, a BCI consists_of five main processing
stages [6]: a data collection stage, where neural data is recorded; a signal processing stage, where
the recorded data is preprocessed and cleaned; a feature extraction stage, where meaningful infor-
mation is extracted from the neural data; a classification stage, where a decis\ion is interpreted from
the data; and a feedback stage, where the result of that decision is providéd to the user. While these
stages are largely the same across BCI paradigms, each paradigm relies on manual specification
of signal processing [7], feature extraction [8] and classification methods‘9], a process which often
requires significant subject-matter expertise and/or a prioritknowledge about the expected EEG
signal. It is also possible that, because the EEG signal preprocessing/steps are often very specific
to the EEG feature of interest (for example, band-pass filtering te a specific frequency range), that
other potentially relevant EEG features could be excluded from analysis (for example, features
outside of the band-pass frequency range). The need for,robust feature extraction techniques will
only continue to increase as BCI technologies evolye into new @pplication domains [3-5,10-12].

Deep Learning has largely alleviated the need for manual feature extraction, achieving state-of-
the-art performance in fields such as computer vision and speech recognition [13,14]. Specifically,
the use of deep convolutional neural networks (CNNs) has grown due in part to their success in
many challenging image classificationgproblems [15-19], surpassing methods relying on hand-crafted
features (see [14] and [20] for recent reviews). Although the majority of BCI systems still rely on
the use of handcrafted features, amnany recent works have explored the application of Deep Learning
to EEG signals. For example, CNNghave been used for epilepsy prediction and monitoring [21-25],
for auditory music retrieval [26, 27], for'detection of visual-evoked responses [28-31] and for motor
imagery classification [32,33], while Deep Belief Networks (DBNs) have been used for sleep stage
detection [34], anomaly detection {35} and in motion-onset visual-evoked potential classification [36].
CNNs using time-frequency tramsforms of EEG data were used for mental workload classification
[37] and for motor imagery classification [38-40]). Restricted Boltzman Machines (RBMs) have been
used for motor imagery [41]. An‘adaptive method based on stacked denoising autoencoders has been
proposed for mental workload classification [42]). These studies focused primarily on classification
in a single BCI task; often timesusing task-specific knowledge in designing the network architecture.
In addition, the amount of 'data used to train these networks varied significantly across studies, in
part due to thedifficulty in collecting data under different experimental designs. Thus, it remains
unclear how these/preyious, deep learning approaches would generalize both to other BCI tasks as
well as to variable training data sizes.

In this work{we introduce EEGNet, a compact CNN for classification and interpretation of
EEG-based BCIs. We introduce the use of Depthwise and Separable convolutions, previously used
in gomputer vision [43], to construct an EEG-specific network that encapsulates several well-known
EEG feature extraction concepts, such as optimal spatial filtering and filter-bank construction,
while simultaneously reducing the number of trainable parameters to fit when compared to exist-
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ing approaches. We evaluate the generalizability of EEGNet on EEG datasets collected from four
different BCI paradigms: P300 visual-evoked potential (P300), error-related negativity (ERN),
movement-related cortical potential (MRCP) and the sensory motor rhythm (SMR), representing
a spectrum of paradigms based on classification of Event-Related Potentials (P300, ERN, MRCP)
as well as classification of oscillatory components (SMR). In addition, each ofithese data. collec-
tions contained varying amounts of data, allowing us to explore the efficacy of EEGNet on various
training data sizes. Our results are as follows: We show that EEGNet achiéves improved classifi-
cation performance over an existing paradigm-agnostic EEG CNN modelraerossinearly all tested
paradigms when limited training data is available. In addition, we show that EEGNet effectively
generalizes across all tested paradigms. We also show that EEGNet, performs/just as well as a
more paradigm-specific EEG CNN model, but with two orders of magnitudefewer parameters to
fit, representing a more efficient use of model parameters (an aspectfthat has been explored in
previous deep learning literature, see [43,44]). Finally, through thewse of feature visualization and
model ablation analysis, we show that neurophysiologically interpretable features can be extracted
from the EEGNet model. This is important as CNNs, despite,their ability for robust and auto-
matic feature extraction, often produce hard to interpretdeatures. For neuroscience practitioners,
the ability to derive insights into CNN-derived neurophysiological,phenomena may be just as im-
portant as achieving good classification performance, depending on the intended application. We
validate our architecture’s ability to extract neurophysiologicglly interpretable signals on several
well-studied BCI paradigms.

The remainder of this manuscript is structured as follows. Section 2.1 gives a brief description
of the four datasets used to validate our CNN model. Section 2.2 describes our EEGNet model as
well as other BCI models (both CNN and non-CNN based models) used in our model comparison.
Section 3 presents the results of both within-subject and cross-subject classification performance,
as well as results of our feature explainability analysis. We discuss our findings in more detail in
the Discussion.

2 Materials and Methds

2.1 Data Description

BCIs are generallyfeategorized into two types, depending on the EEG feature of interest [45]:
event-related and, oscillatory. FEvent-Related Potential (ERP) BCIs are designed to detect a high
amplitude and low frequency EEG response to a known, time-locked external stimulus. They are
generally robust agross subjects and contain well-stereotyped waveforms, enabling the time course
of the ERP to beanodeled through machine learning efficiently [46]. In contrast to ERP-based BCls,
which relysmainly. on' the detection of the ERP waveform from some external event or stimulus,
Oscillatory BClstuse the signal power of specific EEG frequency bands for external control and are
generally asynchronous [47]. When oscillatory signals are time-locked to an external stimulus, they
candbe represented through event-related spectral perturbation (ERSP) analyses [48]. Oscillatory
BClIs are more difficult to train, generally due to the lower signal-to-noise ratio (SNR) as well as
greater variation across subjects [47]. A summary of the data used in this manuscript can be found
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Paradigm ‘ Feature Type Bandpass Filter # of Subjects Trials per Subject # of Classes Class/dmbalance?

P300 ERP 1-40Hz 15 ~ 2000 2 Yes;~ 5.6:1
ERN ERP 1-40Hz 26 340 2 Yes, ~34:1
MRCP ERP/Oscillatory 0.1-40Hz 13 ~ 1100 2 No
SMR Oscillatory 4-40Hz 9 288 4 No

Table 1: Summary of the data collections used in this study. Class imbalance, if present, is given as
odds; i.e.: an odds of 2:1 means the class imbalance is 2/3 of the data for class 1 to 1/3wef the data
for class 2. For the P300 and ERN datasets, the class imbalance is subject-dependent; therefore,
the odds is given as the average class imbalance over all subjects.

in Table 1 ~

2.1.1 Dataset 1: P300 Event-Related Potential (P300)

The P300 event-related potential is a stereotyped neural gesponse to novel visual stimuli [49]. It is
commonly elicited with the visual oddball paradigm, where participants are shown repetitive “non-
target” visual stimuli that are interspersed with infrequent “target” stimuli at a fixed presentation
rate (for example, 1 Hz). Observed over the parietal cortex; the P300 waveform is a large positive
deflection of electrical activity observed approximately 300, ms post stimulus onset, the strength
of the observed deflection being inversely proportional to the frequency of the target stimuli. The
P300 ERP is one of the strongest neural signatures observable by EEG, especially when targets
are presented infrequently [49]. When the image presentation rate increases to 2 Hz or more, it is
commonly referred to as rapid serial gisual, presentation (RSVP), which has been used to develop
BClIs for large image database triage [50=52].

The EEG data used here have been previously described in [51]; a brief description is given
below. 18 participants volunteered for,an RSVP BCI study. Participants were shown images of
natural scenery at 2 Hz rate, with images either containing a vehicle or person (target), or with no
vehicle or person present (non-target). Participants were instructed to press a button with their
dominant hand when a target image was shown. The target/non-target ratio was 20%/80%. Data
from 3 participants were excluded from the analysis due to excessive artifacts and/or noise within
the EEG data. Data frem the remaining 15 participants (9 male and 14 right-handed) who ranged in
age from 18 to 57 yearS (mean age 39.5 years) were further analyzed. EEG recordings were digitally
sampled at 512 Hzfrom 64 scalp electrodes arranged in a 10-10 montage using a BioSemi Active
Two system (Amsterdam, The Netherlands). Continuous EEG data were referenced offline to the
average of the left and right earlobes, digitally bandpass filtered, using an FIR filter implemented
in EEGLAB (53], to 1-40 Hz and downsampled to 128 Hz. EEG trials of target and non-target
conditions were extracted at)[0, 1]s post stimulus onset, and used for a two-class classification.

2.1.2 Dataset 2: Feedback Error-Related Negativity (ERN)

Error-Related Negativity potentials are perturbations of the EEG following an erroneous or unusual
eventimthe subject’s environment or task. They can be observed in a variety of tasks, including time
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interval production paradigms [54] and in forced-choice paradigms [55,56]. Here we foeuson the
feedback error-related negativity (ERN), which is an amplitude perturbation of the EEG following
the perception of an erroneous feedback produced by a BCI. The feedback ERN is characterized as
a negative error component approximately 350ms, followed by a positive component approximately
500ms, after visual feedback (see Figure 7 of [57] for an illustration). The detection of the feedback
ERN provides a mechanism to infer, and to possibly correct in real-time, the incorrect output of a
BCI. This two-stage system has been proposed as a hybrid BCI in [58,59] and has been shown to
improve the performance of a P300 speller in online applications [60].

The EEG data used here comes from [57] and was used in the “BCI Challenge” hosted by Kaggle
(https://www.kaggle.com/c/inria-bci-challenge); a brief description is given-below. 26 healthy
participants (16 for training, 10 for testing) participated in a P300 spellertask; a system which uses a
random sequence of flashing letters, arranged in a 6 x6 grid, to elicitithe P300response [61]. The goal
of the challenge was to determine whether the feedback of the P300 spellér was correct or incorrect.
The EEG data were originally recorded at 600Hz using 56 passive Ag/AgCl EEG sensors (VSM-
CTF compatible system) following the extended 10-20 systemfor electrode placement. Prior to our
analysis, the EEG data were band-pass filtered, using an FIR filter implemented in EEGLAB [53],
to 1-40 Hz and down-sampled to 128Hz. EEG trials of correct and incorrect feedback were extracted

at [0, 1.25]s post feedback presentation and used asdeatures for a two-class classification.
&

2.1.3 Dataset 3: Movement-Related Cortical Potential (MRCP)

Some neural activities contain both ERP_as well as an oscillatory components. One particular
example of this is the movement-relatedicorticalipotential (MRCP), which can be elicited by vol-
untary movements of the hands and feet and is observable through EEG along the central and
midline electrodes, contralateral §o. the hand or foot movement [62-65]. The MRCP components
can be seen before movement onset (ayslow 0-5Hz readiness potential [66,67] and an early desyn-
chronization in the 10-12Hz frequency band), at movement onset (a slow motor potential [67,68]),
and after movement onset (a late synchronization of 20-30Hz activity approximately 1 second after
movement execution). The MRC}’ has been used previously to develop motor control BCIs for
both healthy and physmally disabled patients [69-71]

The EEG data used here have been previously described in [72]; a brief description is given
below. In this study;13ssubjects performed self-paced finger movements using the left index, left
middle, right index, or right middle fingers. The data was recorded using a 256 channel BioSemi
Active II system at,1024 Hz. Due to extensive signal noise present in the data, the EEG data
were first proc¢essed with' the PREP pipeline [73]. The data were referenced to linked mastoids,
bandpass filtereds using an FIR filter implemented in EEGLAB [53], between 0.1 Hz and 40 Hz,
and then dewnsampled to 128 Hz. We further downsampled the channel space to the standard 64
channel BioSemi.montage. The index and middle finger blocks for each hand were combined for
binary classification of movements originating from the left or right hand. EEG trials of left and
right " hand fingér movements were extracted at [—.5,1]s around finger movement onset and used
for a two-class classification.
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2.1.4 Dataset 4: Sensory Motor Rhythm (SMR)

A common control signal for oscillatory-based BCI is the sensorimotor rhythm (SMR), wherein
mu (8-12Hz) and beta (18-26Hz) bands desynchronize over the sensorimoter cortex comntralateral
to an actual or imagined movement. The SMR is very similar to the oscillatory cemponentrof the
MRCP. Although SMR-based BCIs can facilitate nuanced, endogenous BCI control, they tend to
be weak and highly variable across and within subjects, conventionally demanding user-training
(neurofeedback) and long calibration times (20 minutes) in order to achieve reasonable performance
[45].

The EEG data used here comes from BCI Competition IV Dataset 2A~[74] (called the SMR
dataset for the remainder of the manuscript). The data consists of four classes of imagined move-
ments of left and right hands, feet and tongue recorded from 9 subjectst The EEG data were
originally recorded using 22 Ag/AgCl electrodes, sampled at 250 Hz and,bandpass filtered between
0.5 and 100Hz. We resampled the timeseries to 128 Hz, and follow the same EEG pre-processing
procedure as described in [32], using software that was provided by the authors; a brief summary
is given here. The data were causally filtered using a third-order Butterworth filter in the 4-40Hz
frequency band to minimize the influence of class-discriminative eye movements. The EEG signals
were then standardized with an exponential moving average window with a decay factor of 0.999
(further details can be found in Section A.7 of [32]).

For both the training and test sets we epoched the data at [0.5, 2.5] seconds post cue onset (the
same window which was used in [40,45]). Note thatiwe make predictions for only this time range
on the test set. We perform a four-class. classification using accuracy as the summary measure.

2.2 Classification Methods

2.2.1 EEGNet: Compact CNN Architecture

N

Here we introduce EEGNet, a compact CNN architecture for EEG-based BCIs that (1) can be
applied across several different BCI/paradigms, (2) can be trained with very limited data and (3)
can produce neurophysiologicallytinterpretable features. A visualization and full description of the
EEGNet model can_be found in Figure 1 and Table 2, respectively, for EEG trials, collected at
128Hz sampling rate, having €' channels and T time samples. We fit the model using the Adam
optimizer, using @default parameters as described in [75], minimizing the categorical cross-entropy
loss function. Werun 500 fraining iterations (epochs) and perform validation stopping, saving the
model weights which produced the lowest validation set loss. All models were trained on an NVIDIA
Quadro M6000,GPU, with CUDA 9 and cuDNN v7, in Tensorflow [76], using the Keras API [77].
We omitsthe use of bias units in all convolutional layers. Note that, while all convolutions are one-
dimensional, we‘use two-dimensional convolution functions for ease of software implementation.
Our software implementation can be found at https://github.com/vlawhern/arl-eegmodels.

e In Block 1, we perform two convolutional steps in sequence. First, we fit F; 2D convolutional
filters of size (1,64), with the filter length chosen to be half the sampling rate of the data
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Input Conv2D DepthwiseConv2D SeparableConv2D Classification
Kernel  Output Kernel Output Kernel Output

N @

4

Figure 1: Overall visualization of the EEGNet architecture. Lines denote the convolutional kernel
connectivity between inputs and outputs (called featdre maps) s The network starts with a temporal
convolution (second column) to learn frequency filters then uses a depthwise convolution (middle
column), connected to each feature map individually, to learn frequency-specific spatial filters. The
separable convolution (fourth column) is a combination of a depthwise convolution, which learns a
temporal summary for each feature map individually, followed by a pointwise convolution, which
learns how to optimally mix the feature.maps together. Full details about the network architecture
can be found in Table 2.

(here, 128Hz), outputting Fjfeature maps containing the EEG signal at different band-pass
frequencies. Setting the length of the temporal kernel at half the sampling rate allows for
capturing frequency information at 2Hz and above. We then use a Depthwise Convolution [43]
of size (C,1) to learn a-spatial filter. In CNN applications for computer vision the main
benefit of a depthwise con%ution is reducing the number of trainable parameters to fit, as
these convolutions are net fully-connected to all previous feature maps (see Figure 1 for an
illustration). Impértantlypwhien used in EEG-specific applications, this operation provides a
direct way to learn spatial filters for each temporal filter, thus enabling the efficient extraction
of frequency-gpecifie,spatial filters (see the middle column of Figure 1). A depth parameter
D controls ghe number of spatial filters to learn for each feature map (D = 1 is shown in
Figure 1 for.illustration purposes). This two-step convolutional sequence is inspired in part
by the Filter-Bank Common Spatial Pattern (FBCSP) algorithm [78] and is similar in nature
to another/decomposition technique, Bilinear Discriminant Component Analysis [79]. We
keepboth cenvolutions linear as we found no significant gains in performance when using
nonlinear agtivations. We apply Batch Normalization [80] along the feature map dimension
before applying the exponential linear unit (ELU) nonlinearity [81]. To help regularize or
model; we use the Dropout technique [82]. We set the dropout probability to 0.5 for within-
subject classification to help prevent over-fitting when training on small sample sizes, whereas
we.set the dropout probability to 0.25 in cross-subject classification, as the training set sizes
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Block | Layer # filters size # params Output Activation Options

1 Input (C, T)
Reshape (1,C, T)
Conv2D F (1,64) 64 Fy (Fi, C, T) Linear mode = same
BatchNorm 2% Fy (F,C,T)
DepthwiseConv2D D * Fy (C,1) Cx*D=xFy (D*F,1,7T) Linear mode = valid, depth'= D, max sorm = 1
BatchNorm 2% D * Fy (D*F,1,7T)
Activation (D*F,1,7T) ELU
AveragePool2D (1, 4) D*F,1,T//4)
Dropout* (D*F,1, T//4) p=0250r p=0.5

2 SeparableConv2D  F3 (1,16) 16«xDxFy+ Fox (DxFy) (F2, 1, T //4) Linear mode = same
BatchNorm 2% Fy (F2,1,T//4)
Activation (F2,1,T//4) ELU
AveragePool2D (1, 8) (F2,1,T//32)
Dropout* (F2,1,T//32) p=0:2501 p = 0.5
Flatten (Fy * (T // 32)) e

Classifier | Dense N*(F*T//32) N Softmax max norm = 0.25

Table 2: EEGNet architecture, where C' = number of channels, 7' = number of time points, F} =
number of temporal filters, D = depth multiplier (number, of spatial filters), F» = number of
pointwise filters, and N = number of classes, respectively. For the Dropout layer, we use p = 0.5
for within-subject classification and p = 0.25 for cross-subject classification (see Section 2.1.1 for

more details)
L

are much larger (see Section 2.3 for more details on our within- and cross-subject analyses).
We apply an average pooling layer of size (1, 4) to reduce the sampling rate of the signal to
32Hz. We also regularize each spatial filter by using a maximum norm constraint of 1 on its
weights; [Jw||* < 1.

e In Block 2, we use a Separable Conwolution, which is a Depthwise Convolution (here, of
size (1,16), representing 600ms of EEG activity at 32Hz) followed by F» (1,1) Pointwise
Convolutions [43]. The main benefits of separable convolutions are (1) reducing the number of
parameters to fit and (2) explicitly decoupling the relationship within and across feature maps
by first learning a kernel summarizing each feature map individually, then optimally merging
the outputs afterwardd. Whetrused for EEG-specific applications this operation separates
learning how to summarize individual feature maps in time (the depthwise convolution) with
how to optimally combine the feature maps (the pointwise convolution). This operation is also
particularly useful for EEG signals as different feature maps may represent data at different
time-scales of danformation. In our case we first learn a 500 ms “summary” of each feature
map, then combine the outputs afterwards. An Average Pooling layer of size (1,8) is used
for dimension reduction.

e In the classification block, the features are passed directly to a softmax classification with N
units, N béing the number of classes in the data. We omit the use of a dense layer for feature
aggregation prior to the softmax classification layer to reduce the number of free parameters
in/ the model, inspired by the work in [83].

We investigate several different configurations of the EEGNet architecture by varying the num-
ber of filters, I, and the number of spatial filters per temporal filter, D to learn. We set Iy, = Dx [}
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Trial Length (sec) DeepConvNet ShallowConvNet EEGNet-4,2 EEGNet-8,2

P300 1 174,127 104,002 1,066 2,253
ERN 1.25 169,927 91,602 1,082 2,290
MRCP 15 175,727 104,722 1,098 2,322
SMR* 2 152,219 40,644 796 1,716

Table 3: Number of trainable parameters per model and per dataset for all CNN-based models. We
see that the EEGNet models are up to two orders of magnitude smaller than both DeepConvNet
and ShallowConvNet across all datasets. Note that we use a temporal kernel lengthrof 32 samples
for the SMR dataset as the data were high-passed at 4Hz.

~

(the number of temporal filters along with their associated spatial filters from Block 1) for the du-
ration of the manuscript, although in principle F» can take any wvalue; #5 < D % F} denotes a
compressed representation, learning fewer feature maps than.inputs, whereas F» > D *x F] denotes
an overcomplete representation, learning more feature maps than inputs. We use the notation
EEGNet-F1,D to denote the number of temporal and gpatial. filters to learn; i.e.. EEGNet-4,2
denotes learning 4 temporal filters and 2 spatial filters per temporal filter.

- 4
2.2.2 Comparison with existing CNIN Approaches

We compare the performance of EEGNet against the DeepConvNet and ShallowConvNet models
proposed by [32]; full table descriptions of both models can be found in the Appendix. We imple-
mented these models in Tensorflow and Keras, following the descriptions found in the paper. As
their architectures were originally designed for 250Hz EEG signals (as opposed to 128Hz signals
used here) we divided the lengths of temporalikernels and pooling layers in their architectures by
2 to correspond approximately to the sampling rate used in our models. We train these models in
the same way we train the EEGNet model (see Section 2.2.1).

The DeepConvNet architeetuze, consists of five convolutional layers with a softmax layer for
classification (see Figure 1 ¢f [32]). The ShallowConvNet architecture consists of two convolutional
layers (temporal, then spatial)j a squaring nonlinearity (f(x) = 2?), an average pooling layer and
a log nonlinearity (f(@) = log(®)) We would like to emphasize that the ShallowConvNet archi-
tecture was designed speeifically for oscillatory signal classification (by extracting features related
to log band-power); thuspit may not work well on ERP-based classification tasks. However, the
DeepConvNet architecture was designed to be a general-purpose architecture that is not restricted
to specific feature-types [32], and thus it serves as a more valid comparison to EEGNet. Table 3
shows the number/of trainable parameters per model across all CNN models.

2.2.3 [Comparison with Traditional Approaches

We also compare the performance of EEGNet to that of the best performing traditional approach
forteach individual paradigm. For all ERP-based data analyses (P300, ERN, MRCP) the tradi-
tional approach is the approach which won the Kaggle BCI Competition (code and documenta-
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tion at http://github.com/alexandrebarachant/bci-challenge-ner-2015), which uses a combination
of xDAWN Spatial Filtering [84], Riemannian Geometry [85,86], channel subset selec¢tiommand )
feature regularization (referred to as xDAWN + RG for the remainder of the manuscript).. Here
we provide a summary of the approach, which is done in five steps:

1. Train two set of 5 xDAWN spatial filters, one set for each class of a binary classification task,
using the ERP template concatenation method as described in [86, 87].

2. Perform EEG electrode selection through backward elimination [88] to kéep only the most

relevant 35 channels.
~

3. Project the covariance matrices onto the tangent space using thedog-euclidean metric [85,89].

4. Perform feature normalization using an L; ratio of 0.5, signifying an equal weight for L; and
Lo penalties. An Ly penalty encourages the sum of thé absolute values of the parameters to
be small, whereas an Lo penalty encourages the sumrof the'squares of the parameters to be
small (a theoretical overview of these penalties can be found in [90]).

5. Perform classification using an Elastic Net regression.
L

We use the same xDAWN+RG model parameters across/all comparisons (P300, ERN, MRCP)
with the exception of the initial number of EEG. channels to use, which was set to 56 for ERN
and 64 for P300 and MRCP. While the original selution used an ensemble of bagged classifiers,
for this analysis we only compared asingle model with this approach to a single EEGNet model
on identical training and test sets, as weiexpectiany gains from ensemble learning to benefit both
approaches equally. The original solution also used a set of “meta features” that were specific to
that data collection. As the goaltef this work'is to investigate a general-purpose CNN model for
EEG-based BCls, we omitted the.useref these features as they are specific to that particular data
collection.

For oscillatory-based clasSificatiotvof SMR, the traditional approach is our own implementation
of the One-Versus-Rest (OVR) filter<bank common spatial pattern (FBCSP) algorithm as described
in [78]. Here we providesa brief summary of our approach:

1. Bandpass filter the EEG signal into 9 non-overlapping filter banks in 4Hz steps, starting at
4Hz: 4-8Hz,8-12Hz, ..., 36-40Hz.

2. As the glassification, problem is multi-class, we use OVR classification, which requires that
we train a ¢lassifier forrall pairs of OVR combinations, which there are 4 here (class 1 vs all
others, class.2¥s all others, etc). We train 2 CSP filter pairs (4 filters total) for each filter
bank on thé training data using the auto-covariance shrinkage method by [91]. This will give
a total of 36 features (9 filter banks x 4 CSP filters) for each trial and each OVR combination.

3. Trainfan elastic-net logistic regression classifier [92] for each OVR combination. We set the
elastic net penalty a = 0.95.

10
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4. Find the optimal A value for the elastic-net logistic regression that maximizes the‘validation
set accuracy by evaluating the trained classifiers on a held-out validation set. The multi-class
label for each trial is the classifier that produces the highest probability among the 4 OVR
classifiers.

5. Apply the trained classifiers to the test set, using the A values obtained n Step 4.

Note that this approach differs slightly from the original technique as preposed in [78], where they
use a Naive Bayes Parzen Window classifier. We opted to use an elasti¢ net logistic regression for
ease of implementation, and the fact that it has been used in existing'Software implementations of
FBCSP (for example, in BCILAB [93]). -

2.3 Data Analysis

Classification results are reported for two sets of analyses: (within-subject and cross-subject. Within-
subject classification uses a portion of the subjects data4o train a model specifically for that subject,
although cross-subject classification uses the data from ether subjects to train a subject-agnostic
model. While within-subject models tend to perform better th&n cross-subject models on a variety
of tasks, there is ongoing research investigating techniques to minimize (or possibly eliminate) the
need for subject-specific information to train robust systems [45,52].

For within-subject, we use four-fold blockwise cross-validation, where two of the four blocks
are chosen to be the training set, one block.as the validation set, and the final block as testing.
We perform statistical testing using a repeated-measures Analysis of Variance (ANOVA), modeling
classification results (AUC for P300/MRCP/ERN and Classification Accuracy for SMR) as the
response variable with subject number and classifier type as factors. For cross-subject analysis in
P300 and MRCP we choose, at randomy 4 subjects for the validation set, one subject for the test
set, and all remaining subjects for the training set (see Table 1 for number of subjects per dataset).
This process was repeated 307times; producing 30 different folds. We follow the same procedure
for the ERN dataset, except wefusethe 10 test subjects from the original Kaggle Competition as
the test set for each fold. "We perform statistical testing using a one-way Analysis of Variance,
using classifier type as the factor:” For the SMR dataset, we partitioned the data as follows: For
each subject, select the training, data from 5 other subjects at random to be the training set and
the training data from the remaining 3 subjects to be the validation set. The test set remains
the same as the driginal test set for the competition. Note that this enforces a fully cross-subject
classification amalysis as wé never use the test subjects’ training data. This process is repeated 10
times for each subjects ereating 90 different folds. The mean and standard error of classification
performance were calculated over the 90 folds. We perform statistical testing for this analysis using
the sameftesting procedure as the within-subject analysis.

When training both the within-subject and cross-subject models, we apply a class-weight to
thefloss function whenever the data is imbalanced (unequal number of trials for each class). The
class-weight, we apply is the inverse of the proportion in the training data, with the majority class
set to 1. For example, in the P300 dataset, there is a 5.6:1 odds between non-targets and targets

11
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(Table 1) . In this case the class-weight for non-targets was set to 1, while the class‘weight for
targets was set to 6 (when the odds are a fraction, we take the next highest integer). This procedure
was applied to the P300 and ERN datasets only, as these were the only datasets where significant
class imbalance was present.

Note that for the SMR analysis, we set the temporal kernel length to bes32 samples long, (as
opposed to 64 samples long as given in Table 2) since the data were high-passed at 4Hz

2.4 EEGNet Feature Explainability

~
The development of methods for enabling feature explainability frem deep neural networks has
become an active research area over the past few years, and hassbeen _proposed as an essential
component of a robust model validation procedure, to ensure that the,classification performance
is being driven by relevant features as opposed to noise or artifacts in the data [16,94-100]. We
present three different approaches for understanding the features derived by EEGNet:

1. Summarizing averaged outputs of hidden wunit activations: This approach focuses
on summarizing the activations of hidden units at layer§ specified by the user. In this work
we choose to summarize the hidden unit activations representing the data after the depth-
wise convolution (the spatial filter operation in EEGNet). Because the spatial filters are tied
directly to a particular temporal filter, they previde additional insights into the spatial local-
ization of narrow-band frequency activity. Here we summarize the spatially-filtered data by
calculating the difference in averaged time-frequency representations between classes, using
Morlet wavelets [101].

2. Visualizing the convolutional kernel weights: This approach focuses on directly visual-
izing and interpreting the gonvolutional kernel weights from the model. Generally speaking,
interpreting the convolutional kernel weights is very difficult due to the cross-filter-map con-
nectivity between any two layers. (However, because EEGNet limits the connectivity of the
convolutional layers (using depthwise and separable convolutions), it is possible to interpret
the temporal convolution as narrow-band frequency filters and the depthwise convolution as
frequency-specifie spatial filters.

3. Calculatingssingle-trial feature relevance on the classification decision: This ap-
proach focuses on calculating, on a single-trial basis, the relevance of individual features on
the resulting classification decision. Positive values of relevance denote evidence supporting
the outc¢ome, while negative values of relevance denote evidence against the outcome. In
our analysis we used DeepLIFT with the Rescale rule [98], as implemented in [99], to calcu-
latessingle-trialdEEG feature relevance. DeepLIFT is a gradient-based relevance attribution
method that calculates relevance values per feature relative to a “reference” input (here, an
input of zeros, as is suggested in [98]), and is a technique similar to Layerwise Relevance
Propagation (LRP) which has been used previously for EEG analysis [33] (a summary of
gradient-based relevance attribution methods can be found in [99]). This analysis can be
used 4o elucidate feature relevance from high-confidence versus low-confidence predictions,

12
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4-fold Within-Subject Classification Performance
T

Il xDAWN+RG

[l DeepConvNet
= [ shallowConvNet
[ IEEGNet-4,2
[ JEEGNet-8,2

AUC

P300 MRCP ERN.

Figure 2: 4-fold within-subject classification performance for the P300, ERN and MRCP datasets
for each model, averaged over all folds and all subjects. Error barsidenote 2 standard errors of
the mean. We see that, while there is minimal difference between all'the CNN models for the
P300 dataset, there are significant differences in the MREP, datasets with both EEGNet models
outperforming all other models. For the ERN dataset we also seexboth EEGNet models performing
better than all others (p < 0.05).

and can be used to confirm that the relevant features learned are interpretable, as opposed
to noise or artifact features.

3 Results

3.1 Within-Subject Classification

We compare the performance of both the CNN-based reference algorithms (DeepConvNet and
ShallowConvNet) and the traditional approach (xDAWN+RG for P300/MRCP/ERN and FBCSP
for SMR) with EEGNet-4,2 and EEGNet-8,2. Within-subject four-fold cross-validation results
across all algorithms, for P300, MRCP and ERN datasets are shown in Figure 2. We observed,
across all paradigms, that there"was no statistically significant difference between EEGNet-4,2
and EEGNet-8,2 (p >-0.05)pindicating that the increase in model complexity did not statistically
improve classification performance. For the P300 dataset, all CNN-based models significantly out-
perform xDAWN%RG (p < 0.05) while not performing significantly different amongst themselves.
For the ERN dataset, EEGNet-8,2 outperforms DeepConvNet, ShallowConvNet and xDAWN-+RG
(p < 0.05), while/EEGNet-4,2 outperforms DeepConvNet and ShallowConvNet (p < 0.05). The
biggest difference observed among all the approaches is in the MRCP dataset, where both EEGNet
models statisticallyoutperform all others by a significant margin (DeepConvNet, ShallowConvNet
and xDAWN+RG, p < 0.05 for each comparison).

Four-fold eross-validation results for the SMR dataset are shown in Figure 3. Here we see
the performances of ShallowConvINet and FBCSP are very similar, replicating previous results as
reportedsin [32], while DeepConvNet performance is significantly lower. We also see that EEGNet-

13
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14-fold Within-Subject Classification Performance: SMR

Il FBCSP
09 [l DeepConvNet

[ ShallowConvNet
0.8 [1EEGNet-4,2

[ JEEGNet-8,2
0.7 T

T I
>0.6 1

Figure 3: 4-fold within-subject classification performance for the . SMRudataset for each model,
averaged over all folds and all subjects. Error bars denote 2 standard errors of the mean. Here we
see DeepConvNet statistically performed worse than all other models (p < 0.05). ShallowConvNet
and EEGNet-8,2 performed similarly to that of FBCSP.

8,2 performance is similar to FBCSP as well.

3.2 Cross-Subject Classification

Cross-subject classification results across,all algorithms for P300, MRCP and ERN datasets are
shown in Figure 4. Similar to the within-subject analysis, we observed no statistical difference
between EEGNet-4,2 and EEGNet-8,2 across, all datasets (p > 0.05). For the P300 dataset, all
CNN-based models significantly outperform xDAWN+RG (p < 0.05) while not performing sig-

Cross-Subject Classification Performance
T

A S

J

Il xDAWN+RG
[l DeepConvNet 4
[shallowConvNet
[ EEGNet-4,2
[ JEEGNet-8,2

1

AUC

P300 MRCP ERN

Figure 4: Cross-Subject classification performance for the P300, ERN and MRCP datasets for each
modelg.averaged/for 30 folds. Error bars denote 2 standard errors of the mean. For the P300 and
MRCP datasets there is minimal difference between the DeepConvNet and the EEGNet models,
with, both models outperforming ShallowConvNet. For the ERN dataset the reference algorithm
(xDAWN,#+ RQG) significantly outperforms all other models.

14
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Cross-Subject Classification Performance: SMR

IlFBCSP
0.9 [ DeepConvNet
[ShallowConvNet
0.8 [CIEEGNet-4,2
[ IEEGNet-8,2
0.7

HH
HH

Figure 5: Cross-Subject classification performance for the SMR for eaclimmodel, averaged over all
folds and all subjects. Error bars denote 2 standard errors of ghe mean. We see that all CNN-based
models perform similarly, while slightly outperforming FBCSP:

nificantly different amongst themselves. For the MRCP dataset EEGNet-8,2 and DeepConvNet
significantly outperform ShallowConvNet (p < 0.05). We also see that both DeepConvNet and
ShallowConvNet performance is better when compared to its’within—subject performance for the
MRCP dataset. For the ERN dataset, xDAWN + RG outperforms all CNN models (p < 0.05).
Cross-subject classification results for the SMR, dataset are shown in Figure 5, where we found no
significant difference in performance across all. CNN=based models (p > 0.05).

3.3 EEGNet Feature Characterization

We illustrate three different appreaches. to characterize the features learned by EEGNet: (1) Sum-
marizing averaged outputs of hidden unit activations, (2) visualizing convolutional kernel weights,
and (3) calculating single-trial feature relevances on classification decision. We illustrate Approach
1 on the P300 dataset for a cross—;b ject trained EEGNet-4,1 model. We chose to analyze the filters
from the P300 dataset due to the fact that multiple neurophysiological events occur simultaneously:
participants were toldito presspa button with their dominant hand whenever a target image ap-
peared on the screen. “Because of this, target trials contain both the P300 event-related potential
as well as the alpha/betaydesynchronizations in contralateral motor cortex due to button presses.
Here we were interested in‘whether or not the EEGNet architecture was capable of separating out
these confounding events. We were also interested in quantifying the classification performance of
the architecture whenever. specific filters were removed from the model.

Figures6rshows the spatial topographies of the four filters along with an average wavelet time-
frequengy difference, calculated using Morlet wavelets [101], between all target trials and all non-
target trials. Here we see four distinct filters appear. The time-frequency analysis of Filter 1 shows
an increase inlow-frequency power approximately 500ms after image presentation, followed by
desynchronizations in alpha frequency. As nearly all subjects in the P300 dataset are right-handed,
we also see significant activity along the left motor cortex. Time-frequency analysis of Filter 2
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Figure 6: Visualization of the features derived from an/EEGNet-4,1 model configuration for one
particular cross-subject fold in the P300 dataset. (A) Spatial topoplots for each spatial filter. (B)
The mean wavelet time-frequency difference betweentarget and non-target trials for each individual

filter.

2 4

appears to show a significant theta-beta relationship; while increases in theta activity have been
previously noted in the P300 literature in responseito targets [102], a relationship between theta
and beta has not previously been noted. The time-frequency difference for Filter 4 appears to
correspond with the P300, with an increase low=frequency power approximately 350ms after image

presentation.

Filters Removed

Test Set AUC

(1)

0.8866
0.9076
0.8910
0.8747

0.8875
0.8593
0.8325
0.8923
0.8721
0.8206

0.8637
0.8202
0.7108
0.7970

0.9054

Table 4: APerformance of a cross-subject trained EEGNet-4,1 model when removing certain filters
from the model,{then using the model to predict the test set for one randomly chosen fold of the
P300 dataset. AUC values in bold denote the best performing model when removing 1, 2 or 3 filters
at a time. Asthe number of filters removed increases, we see decreases in classification performance,
although the magnitude of the decrease depends on which filters are removed.
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12 Figure 7: Visualization of the features derived from a within-subject trained\EEGNet—S,Q model for
17 Subject 3 of the SMR dataset. Each of the 8 columns shows thedearned temporal kernel for a 0.25
18 second window (top) with its two associated spatial filters (bottom twe). We see that, while many
19 of the temporal filters are isolating slower-wave activity, the‘network identifies a higher-frequency
20 filter at approximately 32Hz (Temp. Filter 3, which shows®8cycles.in‘a 0.25 s window).
21
;g 457 We also conducted a feature ablation study, where  weriteratively removed a set of filters (by
24 sss replacing the filters with zeros) and re-applied the model topredict trials in the test set. We do this
25 459 for all combinations of the four filters. Classification fesults for this ablation study are shown in
26 w60 Table 4. We see that test set performance is‘minimally impacted by the removal of any single filter,
27 461 with the largest decrease occurring when removing Filter 4. As expected, when removing pairs of
;2 462 filters the decrease in performance is more pronounced, with the largest decrease observed when
30 463 removing Filters 3 and 4. Removing Filters.2 and 8 results in practically no change in classification
31 464 performance when compared to the fullhimodel, “suggesting that the most important features in
32 465 this task are being captured by, Filters 1 and,4. This finding is further reinforced when looking
33 w66 at classification performance whemthree filters are removed; a model that contains only Filter 4
34 a7 (0.8637 AUC) performs fairly well"when compared to models that contain only Filter 2 (0.7108
22 ws AUC) or Filter 1 (0.7970 AUC).
37 460 Figure 7 shows the filters Ieal}ed for the EEGNet-8,2 model for a within-subject classification
38 470 of Subject 3 for the SMR dataset. Each column of this figure denotes the learned temporal kernel
ig s (top row) with its twe/associatedspatial filters (bottom two rows). Note that we are learning
41 42 temporal filters of length 32 samples, which correspond to 0.25 seconds in time; hence, we estimate
42 473 the frequency for each temporal filter as four times the number of observed cycles. Here we see that
43 s EEGNet-8,2 learns both slow-frequency activity at approximately 12Hz (Filters 1, 2, 6 and 8, which
44 a5 show three cycles in a.0.25 8§ window) and high-frequency activity at approximately 32Hz (Filter 3,
45 a6 which show 8/eycles). Figure 8 compares the spatial filters associated with 8-12Hz frequency band
46 47 learned by EEGNet-8,2 withithe spatial filters learned by FBCSP in the 8-12Hz filter-bank for each
j; 473 of the fourrOVR combinations. For ease of description we will use the notation X-Y to denote the
49 479 row-column filter, Here we see many of the filters are strongly positively correlated across models
50 a0 (i.e.: thel-1 filter of EEGNet-8,2 with the 3-1 filter for FBCSP (p = 0.93) and the 2-1 filter of
51 i1 EEGNet-8,2 with the 3-4 filter of FBCSP (p = 0.83)), while some are strongly negatively correlated
52 sz (the 3-1 filter of EEGNet-8,2 with the 1-1 filter of FBCSP (p = —0.93)), indicating a similar filter
53 43 up toa sign ambiguity.
54
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A B

FBCSP 8-12Hz Spatial Filters EEGNet-8,2 12Hz Spatial. Filters

Spatial Filter 1 Spatial Filter 2 Spatial Filter 3 Spatial Filter 4 Spatial Filter 1 Spatial Filter 2

Left hand vs. all Temporal Filter 1

Right hand vs. all | » Temporal Filter 2

Both feet vs. all

Tongue vs. all @

Figure 8: Comparison of the 4 spatial filters learned by FBCSQP in the 8-12Hz filter bank for each
OVR class combination (A) with the spatialfilters learned by EEGNet-8,2 (B) for 4 temporal filters
that capture 12Hz frequency activity for Subjeet3 of the SMR dataset (Temporal Filters 1, 2, 6
and 8, see Figure 7). We see that, for this subject, similar filters appear across both FBCSP and
EEGNet-8,2.

Temporal Filter 6

Temporal Filter 8

Figure 9 shows the single-trial feature relevances for EEGNet-8,2, calculated using DeepLIFT,
for three three different test trials for one cross-subject fold of the MRCP dataset. Here we see
that the high-confidence predictions (Figure 9A and Figure 9B, for left and right finger movement,
respectively) both correctly show the contralateral motor cortex relevance as expected, whereas for
a low-confidence prediction (Figure 9C)4 the feature relevance is more broadly distributed, both in
time and in space on the scalp.

Figure 10 shows an additional example of using DeepLIFT to analyze feature relevance for
a cross-subject trained EEGNet-4,2 model for one test subject of the ERN dataset. Margaux
et. al. [57] previously noted that the average ERP for correct feedback trials has an earlier peak
positive potentialy corresponding to approximately 325 ms, whereas the positive peak potential
for incorrect trials oceurssslightly later, approximately 475 ms. Here we see the same temporal
difference in the timing ofithe peak positive potential for incorrect feedback trials (vertical line in
top row of Figure 10) and correct feedback trials (vertical line in bottom row of Figure 10). We also
see the DeepLIETfeature relevances align very closely to that of the peak positive potential for
both classes, suggesting that the network has focused on the peak positive potential as the relevant
feature-for ERN classification. This finding supports results previously reported in [57], where they
showed a strong positive correlation between the amplitude of the peak positive potential and the
accuracy of error detection.
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12 Figure 9: (Top row) Single-trial EEG feature relevance forpa cross-subject trained EEGNet-8,2
20 model, using DeepLIFT, for three different test trials of the MRCP dataset: (A) a high-confidence,
2 correct prediction of left finger movement, (B) a high-confidenee, correct prediction of right finger
22 movement and (C) a low-confidence, incorrect prediction of left finger movement. Titles include the
23 true class label and the predicted probability of thatdabel.\(Bottom row) Spatial topoplots of the
24 relevances at two time points: approximately 50 ms and 150 mis after button press. As expected,
25 the high-confidence trials show the correct relevances corresponding to contralateral motor cortex
26 for left (A) and right (B) button presses,(respectively, For the low-confidence trial we see the
;273 relevances are more mixed and broadly distributed, without a clear spatial localization to motor
29 cortices.

30

31 s« 4 Discussion

32

33

34 s3  In this work we proposed EEGNet, a compact convolutional neural network for EEG-based BCls
35 s4  that can generalize across different BCI paradigms in the presence of limited data and can produce
36 s05 interpretable features. We evalua@d EEGNet against the state-of-the-art approach for both ERP
2273 s6  and Oscillatory-based BClsfacross four EEG datasets: P300 visual-evoked potentials, Error-Related
39 so7 Negativity (ERN), Movement-Related Cortical Potentials (MRCP) and Sensory Motor Rhythms
40 sos (SMR). To the best ofiour knowledge, this represents the first work that has validated the use of a
41 s00 single network architectureracross multiple BCI datasets, each with their own feature characteristics
42 s and data set sizes. Our woerk introduced the use of Depthwise and Separable Convolutions [43] for
43 su  EEG signal classification, and showed that they can be used to construct an EEG-specific model
44 sz which encapsulates well-known EEG feature extraction concepts. Finally, through the use of feature
45 513 visualization and ablation, analysis, we show that neurophysiologically interpretable features can
j? st be extracted from the EEGNet model. This last finding is particularly important, as it is a critical
48 515 component to understanding the validity and robustness of CNN model architectures not just for
49 sie EEG [32,33], bufifor CNN architectures in general [16,95,100].

g? 517 The learning capacity of CNNs comes in part from their ability to automatically extract intricate
52 si8 feature representations from raw data. However, since the features are not hand-designed by
53 510 human, engineers, understanding the meaning of those features poses a significant challenge in
54
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Figure 10: Single-trial EEG feature relevance for a cross-Subject,trained EEGNet-4,2 model, using
DeepLIFT, for the one test subject of the ERN dataseét.. (Top Row) Feature relevances for three
correctly predicted trials of incorrect feedback, alongmwithiits predicted probability P. (Bottom
Row) Same as the top row but for three correctly/predicted. tsials of correct feedback. The black
line denotes the average ERP, calculated at channel Cz, for incorrect feedback trials (top row) and
for correct feedback trials (bottom row). The,thin vertical line denotes the positive peak of the
average ERP waveform. Here we see feature relevances coincide strongly with the positive peak of
the average ERP waveform for each trial. We also see the positive peak occurring slightly earlier
for correct feedback trials versus incorrectifeedback trials, consistent with the results in [57].

producing interpretable models‘[96]. This is especially true when CNNs are used for the analysis
of EEG data where features from neural signals are often non-stationary and corrupted by noise
artifacts [103,104]. In this study/we illustrated three different approaches for visualizing the features
learned by EEGNet: (1) analyzing spatial filter outputs, averaged over trials, on the P300 dataset,
(2) visualizing the convolutional Kermel weights on the SMR dataset and comparing them to the
weights learned by FBCSP, and (3) performing single-trial relevance analysis on the MRCP and
SMR datasets. For the ERN dataset we compared single-trial feature relevances to averaged ERPs
and showed that relevantfeatures coincided with the peak of the positive potential for correct and
incorrect feedback trialspwhichdas been shown in previous literature to be positively correlated to
classifier performance [57]. In addition, we conducted a feature ablation study to understand the
impact of a classification decision on the presence or absence of a particular feature on the P300
dataset. In each of these analyses, we showed that EEGNet was capable of extracting interpretable
features that generally corresponded to known neurophysiological phenomena.

Generally speaking, the classification performance of DeepConvNet and EEGNet were similar
across all cross-subject analyses, whereas DeepConvNet performance was lower across nearly all
within=subject analyses (with the exception of P300). One possible explanation for this discrepancy
is the amount of training data used to train the model; in cross-subject analyses the training set
sizesiwere about 10-15 times larger than that of within-subject analyses. This suggests that Deep-
ConvNet'is more data-intensive compared to EEGNet, an unsurprising result given that the model
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size of DeepConvNet is two orders of magnitude larger than EEGNet (see Table 3). We believe this
intuition is consistent with the findings originally reported by the developers of Deep@onviNet [32],
where they state that a training data augmentation strategy was needed to obtain good classifica-
tion performance on the SMR dataset. In contrast to their work, we show that EEGNet. performed
well across all tested datasets without the need for data augmentation, making{the model simpler
to use in practice.

In general we found that, both in within- and cross-subject analysessthaty,ShallowConvNet
tended to perform worse on the ERP BCI datasets than on the oscillatory BCI dataset (SMR),
while the opposite behavior was observed with DeepConvNet. We believe this is due to the fact
that the ShallowConvNet architecture was designed specifically to extract logsbandpower features;
in situations where the dominant feature is signal amplitude (as is thefease in many ERP BClIs),
ShallowConvNet performance tended to suffer. The opposite situation occurred with DeepConvNet;
as its architecture was not designed to extract frequency features, its performance was lower in
situations where frequency power is the dominant feature.“In contrast, we found that EEGNet
performed just as well as ShallowConvNet in SMR classification andgust as well as DeepConvNet
in ERP classification (and outperforming in the case of withimssubject MRCP, ERN and SMR
classifications), suggesting that EEGNet is robust enough to learn a wide variety of features over a

range of BCI tasks.
L

The severe underperformance of ShallowConvNet/on within-subject MRCP classification was
unexpected, given the similarity in neural tespeonses between the MRCP and SMR, and the fact
that ShallowConvNet performed well on SMR. This, discrepancy in performance is not due to the
amount of training data used, as within-subject MRCP: ¢lassification has approximately 700 training
trials, evenly split among left and right fingersmovements, whereas the SMR, dataset has only 192
training trials, evenly split among four classes. In addition, we did not observe large deviations
in ShallowConvNet performanceion the other datasets (P300 and ERN). In fact, ShallowConvNet
performed fairly well on within-subject ERN classification, even though this dataset is the smallest
among all datasets used in thigfstudy (enly having 170 training trials total). Determining the

underlying source of this phenomena will be explored in future research.

N
Deep Learning models for EEG generally employ one of three input styles, depending on their

targeted application: (1) the EEG signal of all available channels, (2) a transformed EEG signal
(generally a time-frequency deecomposition) of all available channels [37] or (3) a transformed EEG
signal of a subset of channels [38]. Models that fall in (2) generally see a significant increase in data
dimensionality, thus requiring either more data or more model regularization (or both) to learn
an effective feature representation. This introduces more hyperparameters that must be learned,
increasing the potential variability in model performance due to hyperparameter misspecification.
Models that (fall in (3) generally require a priori knowledge about the channels to select. For
example, the model proposed in [38] uses the time-frequency decomposition of channels Cz, C3
and C4 a$§ the inputs for a motor imagery classification task. This channel selection is intentional,
given the fact that neural responses to motor actions (the sensory motor rhythm) are observed
strongest  at. those channels and are easily observed through a time-frequency analysis. Also, by
only working with three channels, the authors reduce the significant increase in dimensionality
of the data. While this approach works well if the feature of interest is known beforehand, this
approach-is not guaranteed to work well in other applications where the features are not observed
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at those channels, limiting the overall utility of this approach. We believe models that 4allin (1),
such as EEGNet and others [28,30, 31], offer the best tradeoff between input dimensionality and
the flexibility to discover relevant features by providing all available channels. This is especially
important as BCI technologies evolve into novel application spaces, as the features needed for/these
future BCIs may not be known beforehand [3-5,10-12].
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5.1 DeepConvNet and ShallowConvINet architectures

The DeepConvNet and ShallowConvNet architectures are given in Tables 5 and6, respectively. "T'’he
DeepConvNet was designed to be a general-purpose architecture that is netrrestricted to specific
feature types, whereas ShallowConvNet is designed specifically for oscillatery signal classification.

Layer # filters size # params Activation Options

Input (C,T) ~

Reshape (1,C, T)

Conv2D 25 (1, 5) 150 Linear mode =alid, max norm = 2
Conv2D 25 (C, 1) 25 %25 * C + 25 Linear mode,= valid, max norm = 2
BatchNorm 2 %25 epsilon = 1e-05, momentum = 0.1
Activation ELU

MaxPool2D (1, 2)

Dropout p=20.5

Conv2D 50 (1, 5) 25 * 50 * C + 50 Linear mode = valid, max norm = 2
BatchNorm 2 *50 epsilon = 1le-05, momentum = 0.1
Activation ELU

MaxPool2D (1, 2)

Dropout p=20.5

Conv2D 100 (1, 5) 50 *100 * G100, Linear mode = valid, max norm = 2
BatchNorm 2 *100 epsilon = 1le-05, momentum = 0.1
Activation ELU

MaxPool2D (1, 2)

Dropout p=20.5

Conv2D 200 (1, 5)7 200 * 200 * C 4 200 Linear mode = valid, max norm = 2
BatchNorm 2200 epsilon = 1le-05, momentum = 0.1
Activation ELU

MaxPool2D (1, 2)

Dropout p=20.5

Flatten

Dense N softmax max norm = 0.5

Table 5: DeepConvNet architecture, where C' =

and N = number of classes, respectively.

number of channels, T" = number of time points
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size

# params Ac

Input

Reshape
Conv2D
Conv2D
BatchNorm
Activation
AveragePool2D
Activation
Flatten
Dropout

Dense

as f(r) = 2% and f(z) =

minimum input value is a

40
40

(€, T)
(1,C, T)
(1, 13)
(C 1)

(1, 35), stride (1, 7)

560
40 * 40
2 * 40

log

softmax

O
O
T

Qons

mode = same, max norm = 2
mode = valid, max norm = 2

epsilon = 1e-05, momentum = 0.1

p=20.5

max norm = 0.5
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