
Apprentissage statistique

masedki.github.io

Univesité Paris-Saclay

Année 2024/2025

Références

Problèmes d’apprentissage statistique

▶ Identifier les facteurs de risque du cancer de la prostate
▶ Classifier des phonèmes à partir de périodogrammes
▶ Prédire si une personne est sujette aux crises cardiaques, à

partir de mesures cliniques, son régime et des données
démographiques

▶ Personnaliser un système de détection de spam email
▶ Lecture de codes postaux écrits à la main
▶ Classification d’échantillons de tissus dans différents types de

cancer, en fonction de données d’expression de gènes
▶ Établir une relation entre salaires et variables démographiques
▶ Classifier les pixels d’une image satellite

Question

▶ Sur 4601 mails, on a pu identifier 1813 spams.
▶ On a également mesuré sur chacun de ces mails la présence ou

absence de 57 mots.
Peut-on construire à partir de ces données une méthode de
détection automatique de spam ?

Représentation du problème

La plupart de ces problèmes peuvent être appréhendés dans un
contexte de régression : on cherche à expliquer une variable Y par
d’autres variables dites explicatives X1, . . . ,Xp :

Y X

Chiffre image
Mot courbe

Spam ou pas présence/absence d’un ensemble mots
Type de leucémie expressions de gênes

▶ Lorsque la variable à expliquer est quantitative, on parle de
régression.

▶ Lorsqu’elle est qualitative, on parle de discrimination ou
classification supervisée.

Régression

▶ Un échantillon i.i.d d’apprentissage (X1,Y1), . . . , (Xn,Yn)
d’une loi conjointe P inconnue sur Rp × R.

▶ Objectif : Prédire ou expliquer la variable Y à partir d’une
nouvelle observation X .

▶ Méthode : construire une règle de prédiction (ou régression)

m : Rp 7→ R.

▶ Soit ℓ : R× R 7→ R+ une fonction de perte (i.e, ℓ(y , y ′) = 0
et ℓ(y , y ′) > 0 pour y ̸= y ′), par exemple

ℓ(y , y ′) = |y − y ′|q

(perte absolue si q = 1 et perte quadratique q = 2).

Risque ou erreur de généralisation

- Le risque ou erreur de généralisation d’une règle de décision (ou
prédiction) m est défini par

RP(m) = E(X ,Y)

[
ℓ
(
Y ,m(X)

)]
.

La fonction de régression

▶ Un champion
m∗(x) = E

[
Y |X = x

]
appelé fonction de régression.

▶ Pour toute autre fonction m, on a

E
[(
Y −m∗(X)

)2] ≤ E
[(
Y −m(X)

)2]
.

La fonction de régression

Nous avons

EX ,Y

[(
Y −m

(
X
))2
]
= EXEY |X

[(
Y −m

(
X
))2

| X
]

Donc il suffit de minimiser cette erreur ponctuellement en X

m(x) = argmincEY |X

[(
Y − c

)2
| X = x

]
.

La solution est donnée par

m∗(x) = E
[
Y | X = x

]

La classification binaire

▶ Un échantillon i.i.d d’apprentissage (X1,Y1), . . . , (Xn,Yn)
d’une loi conjointe P inconnue sur Rp × {0, 1}.

▶ Objectif : Prédire ou expliquer la variable Y à partir d’une
nouvelle observation X .

▶ Méthode : construire une règle classification (ou décision)

g : Rp 7→ {0, 1}.

▶ La fonction de perte binaire ℓ(y , y ′) = 1y ̸=y .
▶ Risque associé à g : taux de mauvais classement

RP(g) = E
[
ℓ
(
g(X),Y

)]
= P

(
g(X) ̸= Y

)
.

La règle de Bayes

▶ Un champion appelé règle de Bayes

g∗(x) =

{
1 si η(x) ≥ 1

2

0 sinon,

où η(x) = P(Y = 1|X = x).
▶ Quelque soit la règle de décision g , nous avons

RP(g
∗) = P

(
g∗(X) ̸= Y

)
≤ P

(
g(X) ̸= Y

)
= RP(g).

Règle de Bayes : un théorème

▶ Pour toute règle de classification g : X 7→ Y, pour la fonction
de perte binaire, nous avons

R(g)− R(g∗) = EX

[
1
{
g(X) ̸= g∗(X)

}∣∣∣2η(X)− 1
∣∣∣].

▶ Interpréter ce résultat lorsque

η(x) =
1
2
, ∀x ∈

{
x ∈ X : g(x) ̸= g∗(x)

}

Début de preuve

On remarque que :

EY |X=x

[
1
{
Y = g∗(x)

}]
= PY |X

[
Y = g∗(x)

]
=

{
η(x) si η(x) ≥ 1

2

1 − η(x) sinon

=
1
2
+
∣∣η(x)− 1

2

∣∣.
Rappel :

EX ,Y h
(
X ,Y

)
= EXEY |Xh

(
X ,Y

)
.

suite de la preuve : voir notes

http://masedki.github.io/enseignements/sta212/regle_bayes.pdf

Proposition

R∗ = R(g∗) = EX

[
min

{
η(X), 1 − η(X)

}]
Preuve : voir notes

http://masedki.github.io/enseignements/sta212/regle_bayes.pdf

Problème majeur !!

▶ Problème: m∗ est inconnu en pratique. Il faut construire un
régresseur m̂n à partir des données (X1,Y1), . . . , (Xn,Yn), tel
que

m̂n(x) ≈ m∗(x).

▶ Problème: g∗ est inconnue en pratique. Il faut construire une
règle ĝn à partir des données (X1,Y1), . . . , (Xn,Yn), tel que

ĝn(x) ≈ g∗(x).

Un candidat naturel

À partir des expressions de m∗ et g∗, proposer deux estimateurs
intuitifs.

Décomposition de l’erreur

Pour tout estimateur m̂n(x) de m∗(x) à x fixé, nous avons

E
[(

m∗(x)− m̂n(x)
)2
]
=
[
m∗(x)

]2 − 2m∗(x)E
[
m̂n(x)

]
+ E

[(
m̂n(x)

)2]
=
[
m∗(x)− E

(
m̂n(x)

)]2
+ E

[(
m̂n(x)

)2]− [E(m̂n(x)
)]2

=
(
biais

)2
+ Var

[
m̂n(x)

]

Notations

- On s’intéresse au cas où on cherche à expliquer une variable
qualitative Y par p variables explicatives X1, . . . ,Xp.
- Y est à valeurs dans un ensemble discret fini de modalités qui
peuvent être numérotées par des les indices {1, 2, . . . ,K} et les
variables X1, . . . ,Xp peuvent être qualitatives et/ou quantitatives.
- Néanmoins, pour présenter les méthodes, on se restreint au cas où
Y est à 2 modalités (0 et 1).

Complexité d’un modèle (compromis biais variance)

0.0 0.2 0.4 0.6 0.8 1.0

−
0

.1
5

−
0

.1
0

−
0

.0
5

0
.0

0

0.33

x

y

0.0 0.2 0.4 0.6 0.8 1.0

−
0

.1
5

−
0

.1
0

−
0

.0
5

0
.0

0

0.03

x

y

0.0 0.2 0.4 0.6 0.8 1.0

−
0

.1
5

−
0

.1
0

−
0

.0
5

0
.0

0

0.01

x
y

Évaluation de la précision : phénomène de sur-apprentissage

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
02

0.
04

0.
06

0.
08

Averaged training and test errors

1/k

Er
ro

r

KNN ave training error
LS ave training error
KNN ave test error
LS ave test error

Évaluer la précision : premier pas

Supposons que l’on ajuste un modèle f̂ (x) sur des données
d’apprentissage Tr = {(x1, y1), . . . , (xN , yN)}.

Performance de f̂ ?
Première idée : erreur moyenne
de prédiction sur Tr :

MSETr = Moyennei∈Tr

(
yi−f̂ (xi)

)2

OPTIMISTE
(sur-apprentissage)

Meilleure idée : sur un jeu de
données de test,
Te = {(xN+1, yN+1), . . . , },
indépendant de Tr :

MSETe = Moyennei∈Te

(
yi−f̂ (xi)

)2

Les Knn sont victimes du fléau de la dimension

▶ Ces méthodes, basées sur
des moyennes autour des
voisins sont plutôt bonnes
si
− petite dimension

p ≤ 4
− grand échantillon

n ≫ p

▶ des versions lissées,
obtenues par
− méthodes à noyaux
− lissage par splines,
− . . .

Raison. le fléau de la
dimension. Les voisins les plus
proches peuvent être éloignés en
grande dimension
▶ Il faut une quantité

raisonnable de valeurs de yi
à moyenner pour que f̂ (x)
ait une faible variance

▶ En grande dimension, pour
obtenir cette quantité
d’observation, il faut
s’éloigner beaucoup de x .

On perd l’idée de moyenne
locale autre de X = x .

Le fléau de la dimension

18 Chapter 1. Introduction

s

1

1

0

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction of data in neighborhood

E
d
g
e
 l
e
n
g
th

 o
f
c
u
b
e

d=1

d=3

d=5

d=7
d=10

(b)

Figure 1.16 Illustration of the curse of dimensionality. (a) We embed a small cube of side s inside a larger
unit cube. (b) We plot the edge length of a cube needed to cover a given volume of the unit cube as a
function of the number of dimensions. Based on Figure 2.6 from (Hastie et al. 2009). Figure generated by
curseDimensionality.

distance metric to use is Euclidean distance (which limits the applicability of the technique to
data which is real-valued), although other metrics can be used.
Figure 1.15 gives an example of the method in action, where the input is two dimensional, we

have three classes, and K = 10. (We discuss the effect of K below.) Panel (a) plots the training
data. Panel (b) plots p(y = 1|x,D) where x is evaluated on a grid of points. Panel (c) plots
p(y = 2|x,D). We do not need to plot p(y = 3|x,D), since probabilities sum to one. Panel (d)
plots the MAP estimate ŷ(x) = argmaxc(y = c|x,D).
A KNN classifier with K = 1 induces a Voronoi tessellation of the points (see Figure 1.14(b)).

This is a partition of space which associates a region V (xi) with each point xi in such a way
that all points in V (xi) are closer to xi than to any other point. Within each cell, the predicted
label is the label of the corresponding training point.

1.4.3 The curse of dimensionality

The KNN classifier is simple and can work quite well, provided it is given a good distance metric
and has enough labeled training data. In fact, it can be shown that the KNN classifier can come
within a factor of 2 of the best possible performance if N → ∞ (Cover and Hart 1967).
However, the main problem with KNN classifiers is that they do not work well with high

dimensional inputs. The poor performance in high dimensional settings is due to the curse of
dimensionality.
To explain the curse, we give some examples from (Hastie et al. 2009, p22). Consider applying

a KNN classifier to data where the inputs are uniformly distributed in the D-dimensional unit
cube. Suppose we estimate the density of class labels around a test point x by “growing” a
hyper-cube around x until it contains a desired fraction f of the data points. The expected edge
length of this cube will be eD(f) = f1/D . If D = 10, and we want to base our estimate on 10%

Validation croisée

But
▶ Dans cette partie, nous allons discuter de deux méthodes

de ré-échantillonnage : la validation croisée et le bootstrap
▶ Ces méthodes ré-ajustent le modèle que l’on souhaite sur

des échantillons issus de l’échantillon d’apprentissage,
dans le but d’obtenir des informations supplémentaires sur
ce modèle

▶ Par exemples, ces méthodes fournissent des estimations
de l’erreur sur des ensembles de test, le biais et la variance
des estimations de paramètres. . .

Erreur d’entraînement et erreur de test

On rappelle la différence entre erreur de test et erreur
d’entraînement :
▶ L’erreur de test est l’erreur moyenne commise par une

méthode d’apprentissage statistique pour prédire une
réponse sur une nouvelle observation, qui n’a pas été
utilisée pour ajuster le modèle.

▶ En revanche, l’erreur d’entraînement peut être facilement
calculée en appliquant la méthode d’apprentissage sur les
données d’entraînement.

▶ Mais l’erreur d’entraînement est souvent bien différente de
l’erreur de test, et en particulier, l’erreur d’entraînement
sous-estime parfois grandement l’erreur de test — on
parle d’erreur trop optimiste.

Erreur d’entraînement et erreur de test

Estimations de l’erreur de prédiction

▶ La meilleure solution : un grand ensemble de test
clairement désigné. Bien souvent, ce n’est pas disponible.

▶ Certaines méthodes permettent de corriger l’erreur
d’entrainement pour estimer l’erreur de test, avec des
arguments fondés mathématiquement.
Cela inclut les Cp de Mallows, les critères AIC et BIC. Ils
seront discutés plus tard.

▶ Ici, nous nous intéressons à une classe de méthodes qui
estime l’erreur de test en mettant de côté un
sous-ensemble des données d’entraînement disponibles
pour ajuster les modèles, et en appliquant la méthodes
ajustée sur ces données mises de côté.

Approche par ensemble de validation

▶ Cette méthode propose de diviser l’échantillon
d’apprentissage en deux : un ensemble d’entraînement et
un ensemble de validation

▶ Le modèle est ajusté sur l’ensemble d’entraînement, et on
l’utilise ensuite pour prédire les réponses sur l’échantillon
de validation.

▶ L’erreur obtenue en comparant prédiction et observation
sur cet échantillon de validation approche l’erreur de test.
On utilise typiquement des moindres carrés (MSE) en
régression et des taux de mauvaises classification si la
réponse est qualitative (ou une fonction de coût d’erreur)

Exemple sur les données simulées (degré 2)
▶ On veut comparer la régression linéaires à des régressions

polynomiales de différents degrés
▶ On divise en deux les 200 observations : 100 pour

l’entrainement, 100 pour le test.

0 2 4 6 8

1
2

5
10

20
50

10
0

20
0

polynomial degree

me
an

 sq
ua

red
 er

ror

0 2 4 6 8

1
5

10
50

10
0

50
0

10
00

polynomial degree

me
an

 sq
ua

red
 er

ror

Sur une partition aléatoire Variabilité d’une partition à
l’autre

Inconvénients de l’approche par ensemble de validation

▶ L’estimation obtenue par cette méthode peut être très
variable, et dépend de la chance ou malchance dans la
construction du sous-échantillon de validation

▶ Dans cette approche, seule une moitié des observations
est utilisée pour ajuster les modèles — celles qui sont
dans l’ensemble d’entrainement.

▶ Cela suggère que l’erreur calculée peut surestimer l’erreur
de test d’un modèle ajusté sur l’ensemble des données
(moins de variabilité d’échantillonnage dans l’inférence des
paramètres du modèle)

Déjà mieux : échanger les rôles entrainement-validation et
faire la moyenne des deux erreurs obtenues. On croise les rôles.

Validation croisée à K groupes

▶ C’est la méthode la plus couramment utilisée pour estimer
l’erreur de test

▶ L’estimation peut être utilisée pour choisir le meilleur modèle
(la meilleure méthode d’apprentissage), ou approcher l’erreur
de prédiction du modèle finalement choisi.

▶ L’idée est de diviser les données en K groupes de même taille.
On laisse le k-ème bloc de côté, on ajuste le modèle, et on
l’évalue sur le bloc laissé de côté.

▶ On répète l’opération en laissant de côté le bloc k = 1, puis
k = 2,. . . jusqu’à k = K . Et on combine les résultats

Détails

▶ Pour chacune des observations, on obtient une prédiction
ŷi = f̂ (xi) ou ĝ(xi) au moment où i est dans le groupe mis de
côté, et une seule prédiction.

▶ On compare alors ces prédictions aux observations comme
pour l’erreur de test

MSE(K) =
1
n

n∑
i=1

(yi − f̂ (xi))
2

ou

τ(K) =
1
n

n∑
i=1

1
{
yi ̸= ĝ(xi)

}
▶ Lorsque K = n, on parle de leave-one out

cross-validation(LOOCV)

Danger avec le leave-one out !

▶ On dit que LOOCV ne secoue pas assez les données. En effet,
les classifiers Ĉ ou les fonctions de régression inférées f̂ avec
(n − 1) données sont très corrélés les uns aux autres.

▶ On ne voit plus l’erreur d’échantillonnage, autrement dit la
variabilité de l’estimation de la fonction. C’était pourtant tout
l’intérêt de la validation croisée. On choisit généralement
K = 5 ou K = 10 blocs.

Retour au jeu de données simulé

0 2 4 6 8

1
2

5
10

20

polynomial degree

m
ea

n
sq

ua
re

d
er

ro
r

En cas d’égalité, choisir le modèle le plus parcimonieux car il aura
naturellement moins de variance d’estimation dans les coefficients
du modèle.

Méthodes basées sur des arbres

▶ Nous décrivons ici des méthodes basées sur des arbres pour la
classification et la régression.

▶ Cela implique de stratifier ou segmenter l’espace des
prédicteurs en un certain nombre de régions simples.

▶ Comme les règles des partitionnement peuvent être résumées
par un arbre, ce type d’approches sont connues comme des
méthodes à arbres de décision.

Pours et contres

▶ Les méthodes basées sur des arbres sont simples et utiles pour
l’interprétation.

▶ Cependant, elles ne sont pas capables de rivaliser avec les
meilleures approches d’apprentissage supervisé en terme de
qualité de prédiction.

▶ Nous discuterons donc aussi de bagging, forêts aléatoires
(random forests), et boosting. Ces méthodes développent de
nombreux arbres de décision qui sont ensuite combinés pour
produire une réponse consensus.

Decision trees

Can we collect data to automatically create a
decision tree, without domain experts?

MedInc ≤ 5.035
squared_error = 1.332

samples = 20640
value = 2.069

MedInc ≤ 3.074
squared_error = 0.837

samples = 16255
value = 1.735

True

MedInc ≤ 6.82
squared_error = 1.221

samples = 4385
value = 3.306

False

squared_error = 0.561
samples = 7860
value = 1.357

AveOccup ≤ 2.373
squared_error = 0.837

samples = 8395
value = 2.089

squared_error = 1.291
samples = 1954

value = 2.79

squared_error = 0.505
samples = 6441
value = 1.876

AveOccup ≤ 2.743
squared_error = 0.891

samples = 3047
value = 2.906

squared_error = 0.778
samples = 1338
value = 4.216

squared_error = 1.006
samples = 1260
value = 3.391

squared_error = 0.526
samples = 1787
value = 2.563

Figure: Output of a decision tree trained on a real-estate
data set (1990 California housing data set).

E. Scornet Decision trees 4 / 26

Construction of Decision trees - regression

E. Scornet Decision trees 5 / 26

Construction of Decision trees - regression

E. Scornet Decision trees 5 / 26

Construction of Decision trees - regression

E. Scornet Decision trees 5 / 26

Construction of Decision trees - regression

E. Scornet Decision trees 5 / 26

Construction of Decision trees - regression

E. Scornet Decision trees 5 / 26

Construction of Decision trees - regression

E. Scornet Decision trees 5 / 26

Construction of Decision trees - regression

E. Scornet Decision trees 5 / 26

Construction of Decision trees - regression

Decision tree building
Requires a splitting rule
Requires a stopping rule
Requires a prediction rule
→ Average per leaf

E. Scornet Decision trees 5 / 26

Construction of Decision trees - classification

E. Scornet Decision trees 6 / 26

Construction of Decision trees - classification

E. Scornet Decision trees 6 / 26

Construction of Decision trees - classification

E. Scornet Decision trees 6 / 26

Construction of Decision trees - classification

E. Scornet Decision trees 6 / 26

Construction of Decision trees - classification

E. Scornet Decision trees 6 / 26

Construction of Decision trees - classification

Decision tree building
Requires a splitting rule
Requires a stopping rule
Requires a prediction rule
→ Majority vote per leaf

E. Scornet Decision trees 6 / 26

Outline

1 Motivation and general construction

2 Detailed construction
Splitting criterion
Stopping rule and predictions
Categorical features

3 Pruning

4 Final algorithm

E. Scornet Decision trees 7 / 26

Outline

1 Motivation and general construction

2 Detailed construction
Splitting criterion
Stopping rule and predictions
Categorical features

3 Pruning

4 Final algorithm

E. Scornet Decision trees 8 / 26

Splitting criterion

Finding the best split in a cell A requires an impurity
criterion Imp. Based on this criterion, one can define
the impurity reduction associated to a split (j, s) as

∆Imp(j, s; A)
=Imp(A) − pLImp(AL) − pR Imp(AR), (1)

where pL (resp. pR) is the fraction of observations in
A that fall into AL (resp. AR).

E. Scornet Decision trees 9 / 26

Splitting criterion

Finding the best split in a cell A requires an impurity
criterion Imp. Based on this criterion, one can define
the impurity reduction associated to a split (j, s) as

∆Imp(j = 1, s = 0.5; A)
=Imp(A) − pLImp(AL) − pR Imp(AR), (1)

where pL (resp. pR) is the fraction of observations in
A that fall into AL (resp. AR).

E. Scornet Decision trees 9 / 26

Splitting criterion

Finding the best split in a cell A requires an impurity
criterion Imp. Based on this criterion, one can define
the impurity reduction associated to a split (j, s) as

∆Imp(j = 1, s = 0.5; A)
=Imp(A) − pLImp(AL) − pR Imp(AR), (1)

where pL (resp. pR) is the fraction of observations in
A that fall into AL (resp. AR).

E. Scornet Decision trees 9 / 26

Splitting criterion

Finding the best split in a cell A requires an impurity
criterion Imp. Based on this criterion, one can define
the impurity reduction associated to a split (j, s) as

∆Imp(j = 1, s = 0.5; A)
=Imp(A) − pLImp(AL) − pR Imp(AR), (1)

where pL (resp. pR) is the fraction of observations in
A that fall into AL (resp. AR).

E. Scornet Decision trees 9 / 26

Splitting criterion

Finding the best split in a cell A requires an impurity
criterion Imp. Based on this criterion, one can define
the impurity reduction associated to a split (j, s) as

∆Imp(j = 1, s = 0.5; A)
=Imp(A) − pLImp(AL) − pR Imp(AR), (1)

where pL (resp. pR) is the fraction of observations in
A that fall into AL (resp. AR).

E. Scornet Decision trees 9 / 26

Splitting criterion

Finding the best split in a cell A requires an impurity
criterion Imp. Based on this criterion, one can define
the impurity reduction associated to a split (j, s) as

∆Imp(j, s; A)
=Imp(A) − pLImp(AL) − pR Imp(AR), (1)

where pL (resp. pR) is the fraction of observations in
A that fall into AL (resp. AR).

The best split (j⋆, s⋆) is then chosen as

(j⋆, s⋆) ∈ argmax
j,s

∆Imp(j, s; A). (2)

An instance of Imp(A) in regression: the empirical
variance of the Yi s in A.

E. Scornet Decision trees 9 / 26

Finding the best split - an example

Consider splits at the middle of two consecutive
observations
For each split, compute the decrease in impurity
between the parent node and the two resulting
nodes.

E. Scornet Decision trees 10 / 26

Finding the best split - an example

Consider splits at the middle of two consecutive
observations
For each split, compute the decrease in impurity
between the parent node and the two resulting
nodes.

E. Scornet Decision trees 10 / 26

Finding the best split - an example

Consider splits at the middle of two consecutive
observations
For each split, compute the decrease in impurity
between the parent node and the two resulting
nodes.

E. Scornet Decision trees 10 / 26

Finding the best split - an example

Consider splits at the middle of two consecutive
observations
For each split, compute the decrease in impurity
between the parent node and the two resulting
nodes.

E. Scornet Decision trees 10 / 26

Finding the best split - an example

Consider splits at the middle of two consecutive
observations
For each split, compute the decrease in impurity
between the parent node and the two resulting
nodes.

E. Scornet Decision trees 10 / 26

Finding the best split - an example

Consider splits at the middle of two consecutive
observations
For each split, compute the decrease in impurity
between the parent node and the two resulting
nodes.

E. Scornet Decision trees 10 / 26

Finding the best split - an example

Consider splits at the middle of two consecutive
observations
For each split, compute the decrease in impurity
between the parent node and the two resulting
nodes.

E. Scornet Decision trees 10 / 26

Finding the best split - an example

Consider splits at the middle of two consecutive
observations
For each split, compute the decrease in impurity
between the parent node and the two resulting
nodes.

E. Scornet Decision trees 10 / 26

Finding the best split - an example

Consider splits at the middle of two consecutive
observations
For each split, compute the decrease in impurity
between the parent node and the two resulting
nodes.

E. Scornet Decision trees 10 / 26

Finding the best split - an example

Consider splits at the middle of two consecutive
observations
For each split, compute the decrease in impurity
between the parent node and the two resulting
nodes.

E. Scornet Decision trees 10 / 26

Finding the best split - an example

Consider splits at the middle of two consecutive
observations
For each split, compute the decrease in impurity
between the parent node and the two resulting
nodes.

E. Scornet Decision trees 10 / 26

Finding the best split - an example

Consider splits at the middle of two consecutive
observations
For each split, compute the decrease in impurity
between the parent node and the two resulting
nodes.

E. Scornet Decision trees 10 / 26

Finding the best split - an example

Consider splits at the middle of two consecutive
observations
For each split, compute the decrease in impurity
between the parent node and the two resulting
nodes.

E. Scornet Decision trees 10 / 26

Finding the best split - an example

Consider splits at the middle of two consecutive
observations
For each split, compute the decrease in impurity
between the parent node and the two resulting
nodes.

E. Scornet Decision trees 10 / 26

Finding the best split - an example

Consider splits at the middle of two consecutive
observations
For each split, compute the decrease in impurity
between the parent node and the two resulting
nodes.

E. Scornet Decision trees 10 / 26

Finding the best split - an example

Consider splits at the middle of two consecutive
observations
For each split, compute the decrease in impurity
between the parent node and the two resulting
nodes.

E. Scornet Decision trees 10 / 26

Finding the best split - an example

Consider splits at the middle of two consecutive
observations
For each split, compute the decrease in impurity
between the parent node and the two resulting
nodes.

E. Scornet Decision trees 10 / 26

Finding the best split - an example

Consider splits at the middle of two consecutive
observations
For each split, compute the decrease in impurity
between the parent node and the two resulting
nodes.

E. Scornet Decision trees 10 / 26

Finding the best split - an example

Consider splits at the middle of two consecutive
observations
For each split, compute the decrease in impurity
between the parent node and the two resulting
nodes.

E. Scornet Decision trees 10 / 26

Finding the best split - an example

Consider splits at the middle of two consecutive
observations
For each split, compute the decrease in impurity
between the parent node and the two resulting
nodes.

E. Scornet Decision trees 10 / 26

Finding the best split - an example

Consider splits at the middle of two consecutive
observations
For each split, compute the decrease in impurity
between the parent node and the two resulting
nodes.

E. Scornet Decision trees 10 / 26

Finding the best split - an example

Consider splits at the middle of two consecutive
observations
For each split, compute the decrease in impurity
between the parent node and the two resulting
nodes.
Select the split maximizing the decrease in impu-
rity

E. Scornet Decision trees 10 / 26

Impurity criteria

For regression, letting Nn(A) the number of
observations in the cell A and ȲA the mean
of the Yi s in A:

Variance
ImpV (A) = 1

Nn(A)
∑

i,Xi ∈A

(Yi − ȲA)2,

(3)
Mean absolute deviation around the
median

ImpL1 (A)

= 1
Nn(A)

∑
i,Xi ∈A

|Yi − Med(Yi : Xi ∈ A)|.

(4)

E. Scornet Decision trees 11 / 26

Impurity criteria

For classification, letting pk,n(A) the propor-
tion of observations in A such that Y = k:

Misclassification error rate
Imperr (A) = 1 − max

1≤k≤K
pk,n(A) (3)

Gini

ImpG(A) =
K∑

k=1

pk,n(A)(1 − pk,n(A)).

(4)
Entropy

ImpH(A) = −
K∑

k=1

pk,n(A) log2(pk,n(A)).

(5)

E. Scornet Decision trees 11 / 26

Splitting criterion and risk of the method

Consider the variance as impurity measure:

Imp(A) = 1
Nn(A)

∑
i,Xi ∈A

(Yi − ȲA)2. (6)

E. Scornet Decision trees 12 / 26

Splitting criterion and risk of the method

Consider the variance as impurity measure:

Imp(A) = 1
Nn(A)

∑
i,Xi ∈A

(Yi − ȲA)2. (6)

For any split (j, s) in any cell A resulting in cells AL
and AR , the impurity reduction takes the form

∆Imp(j, s; A)
=Imp(A) − pLImp(AL) − pR Imp(AR)

= 1
Nn(A)

∑
i,Xi ∈A

(Yi − ȲA)2

− 1
Nn(A)

∑
i,Xi ∈A

(Yi − ȲAL1Xi ∈AL − ȲAR1Xi ∈AR)2.

(7)

E. Scornet Decision trees 12 / 26

Splitting criterion and risk of the method

For any split (j, s) in any cell A resulting in cells AL
and AR , the impurity reduction takes the form

∆Imp(j, s; A)
=Imp(A) − pLImp(AL) − pR Imp(AR)

= 1
Nn(A)

∑
i,Xi ∈A

(Yi − ȲA)2

− 1
Nn(A)

∑
i,Xi ∈A

(Yi − ȲAL1Xi ∈AL − ȲAR1Xi ∈AR)2.

(6)

Thus finding the best split is equivalent to
minimizing

1
Nn(A)

∑
i,Xi ∈A

(Yi − ȲAL1Xi ∈AL − ȲAR1Xi ∈AR)2 (7)

E. Scornet Decision trees 12 / 26

Splitting criterion and risk of the method

For any split (j, s) in any cell A resulting in cells AL
and AR , the impurity reduction takes the form

∆Imp(j, s; A)
=Imp(A) − pLImp(AL) − pR Imp(AR)

= 1
Nn(A)

∑
i,Xi ∈A

(Yi − ȲA)2

− 1
Nn(A)

∑
i,Xi ∈A

(Yi − ȲAL1Xi ∈AL − ȲAR1Xi ∈AR)2.

(6)

Thus finding the best split is equivalent to
minimizing

1
Nn(A)

∑
i,Xi ∈A

(Yi − ȲAL1Xi ∈AL − ȲAR1Xi ∈AR)2 (7)

This corresponds to the square loss of a predictor,
which is piecewise constant on AL and AR , whose
values equal the mean of Yi ’s in each cell.

E. Scornet Decision trees 12 / 26

Splitting criterion and risk of the method

Thus finding the best split is equivalent to
minimizing

1
Nn(A)

∑
i,Xi ∈A

(Yi − ȲAL1Xi ∈AL − ȲAR1Xi ∈AR)2 (6)

This corresponds to the square loss of a predictor,
which is piecewise constant on AL and AR , whose
values equal the mean of Yi ’s in each cell.

Optimal partition. Finding the tree partition with
the minimal quadratic risk on the training set.

Statistically sound
Computationally infeasible

E. Scornet Decision trees 12 / 26

Splitting criterion and risk of the method

Thus finding the best split is equivalent to
minimizing

1
Nn(A)

∑
i,Xi ∈A

(Yi − ȲAL1Xi ∈AL − ȲAR1Xi ∈AR)2 (6)

This corresponds to the square loss of a predictor,
which is piecewise constant on AL and AR , whose
values equal the mean of Yi ’s in each cell.

Greedy partition. At each step, finding the split with
the minimal quadratic risk on the training set.

Not the best predictive performances
Computationally cheap

E. Scornet Decision trees 12 / 26

Splitting criterion and risk of the method

Thus finding the best split is equivalent to
minimizing

1
Nn(A)

∑
i,Xi ∈A

(Yi − ȲAL1Xi ∈AL − ȲAR1Xi ∈AR)2 (6)

This corresponds to the square loss of a predictor,
which is piecewise constant on AL and AR , whose
values equal the mean of Yi ’s in each cell.

Greedy partition. At each step, finding the split with
the minimal quadratic risk on the training set.

Not the best predictive performances
Computationally cheap

General rule. Choose the splitting criterion corre-
sponding to the risk you want to minimize.

E. Scornet Decision trees 12 / 26

Splitting criterion and risk of the method

General rule. Choose the splitting criterion corre-
sponding to the risk you want to minimize.

Regression
The variance corresponds to the L2 risk.
The mean absolute deviation around the median
is close to the L1 risk

Classification
The entropy impurity is related to the cross-
entropy loss
The Gini impurity is not related to any loss, as it
does not correspond to a majority vote but rather
a random one
The misclassification error rate is related to 0 − 1
loss, which should not be used, as detailed here-
after.

E. Scornet Decision trees 12 / 26

Splitting criterion and risk of the method

General rule. Choose the splitting criterion corre-
sponding to the risk you want to minimize.

Regression
The variance corresponds to the L2 risk.
The mean absolute deviation around the median
is close to the L1 risk

Classification
The entropy impurity is related to the cross-
entropy loss
The Gini impurity is not related to any loss, as it
does not correspond to a majority vote but rather
a random one
The misclassification error rate is related to 0 − 1
loss, which should not be used, as detailed here-
after.

E. Scornet Decision trees 12 / 26

Classification - which impurity to use?

We can choose between
Misclassification rate

Imperr (A) = 1 − max
1≤k≤K

pk,n(A) (6)

Gini

ImpG(A) =
K∑

k=1

pk,n(A)(1 − pk,n(A)). (7)

Entropy

ImpH(A) = −
K∑

k=1

pk,n(A) log2(pk,n(A)). (8)

E. Scornet Decision trees 13 / 26

Classification - which impurity to use?

In a binary classification setting, impurities can be
rewritten as

Misclassification rate
Imperr (A) = 1 − max

k∈{0,1}
pk,n(A) (6)

Gini
ImpG(A) = 2p0,n(A)(1 − p0,n(A)) (7)

Entropy
ImpH(A) = − p0,n(A) log2(p0,n(A))

− (1 − p0,n(A)) log2(1 − p0,n(A))
(8)

E. Scornet Decision trees 13 / 26

Classification - which impurity to use?

Let us take an example:

For such a split of the parent cell A, we have
Imperr (A) = Imperr (AL) = Imperr (AR) = 0.1, (6)

E. Scornet Decision trees 13 / 26

Classification - which impurity to use?

Let us take an example:

For such a split of the parent cell A, we have
Imperr (A) = Imperr (AL) = Imperr (AR) = 0.1, (6)

Since ∆Imperr = 0, the split appears to be
non-informative.

E. Scornet Decision trees 13 / 26

Classification - which impurity to use?

Let us take an example:

Since ∆Imperr = 0, the split appears to be
non-informative.
But the right node is pure! The decrease in
impurity for the two other criterion is

∆ImpG(A) = 0.005
and ∆ImpH(A) = 0.01. (6)

E. Scornet Decision trees 13 / 26

Classification - which impurity to use?

Let us take an example:

Since ∆Imperr = 0, the split appears to be
non-informative.
But the right node is pure!

This phenomenon results from the fact that the
misclassification rate in the binary setting is not
strictly concave, contrary to the Entrope/Gini
criterion. More explanation herea

ahttps://tushaargvs.github.io/assets/teaching/
dt-notes-2020.pdf

E. Scornet Decision trees 13 / 26

https://tushaargvs.github.io/assets/teaching/dt-notes-2020.pdf
https://tushaargvs.github.io/assets/teaching/dt-notes-2020.pdf

Classification - which impurity to use?

Let us take an example:

Since ∆Imperr = 0, the split appears to be
non-informative.
But the right node is pure!

Misclassification criterion is not precise enough to
be used for building trees.

E. Scornet Decision trees 13 / 26

Outline

1 Motivation and general construction

2 Detailed construction
Splitting criterion
Stopping rule and predictions
Categorical features

3 Pruning

4 Final algorithm

E. Scornet Decision trees 14 / 26

Decision tree

Now that we have defined a splitting rule, let us see
the rest of the tree construction.

Decision tree building
Splitting rule (Variance in regression, Gini or
Entropy in classification)

E. Scornet Decision trees 15 / 26

Decision tree

Now that we have defined a splitting rule, let us see
the rest of the tree construction.

Decision tree building
Splitting rule (Variance in regression, Gini or
Entropy in classification)
Stopping rule

(by default, one observation per
leaf)

Stopping rule for splitting a cell:

All samples have the same label (classification)
No reduction of the impurity criterion
The next split will produce cells with less than
min-samples-leaf observations (1, by default)
The cell contains less than min-samples-split
observations (2, by default)
The cell has already been split max-depth times
(∞, by default)

E. Scornet Decision trees 15 / 26

Decision tree

Now that we have defined a splitting rule, let us see
the rest of the tree construction.

Decision tree building
Splitting rule (Variance in regression, Gini or
Entropy in classification)
Stopping rule

(by default, one observation per
leaf)

Stopping rule for splitting a cell:
All samples have the same label (classification)

No reduction of the impurity criterion
The next split will produce cells with less than
min-samples-leaf observations (1, by default)
The cell contains less than min-samples-split
observations (2, by default)
The cell has already been split max-depth times
(∞, by default)

E. Scornet Decision trees 15 / 26

Decision tree

Now that we have defined a splitting rule, let us see
the rest of the tree construction.

Decision tree building
Splitting rule (Variance in regression, Gini or
Entropy in classification)
Stopping rule

(by default, one observation per
leaf)

Stopping rule for splitting a cell:
All samples have the same label (classification)
No reduction of the impurity criterion

The next split will produce cells with less than
min-samples-leaf observations (1, by default)
The cell contains less than min-samples-split
observations (2, by default)
The cell has already been split max-depth times
(∞, by default)

E. Scornet Decision trees 15 / 26

Decision tree

Now that we have defined a splitting rule, let us see
the rest of the tree construction.

Decision tree building
Splitting rule (Variance in regression, Gini or
Entropy in classification)
Stopping rule

(by default, one observation per
leaf)

Stopping rule for splitting a cell:
All samples have the same label (classification)
No reduction of the impurity criterion
The next split will produce cells with less than
min-samples-leaf observations (1, by default)

The cell contains less than min-samples-split
observations (2, by default)
The cell has already been split max-depth times
(∞, by default)

E. Scornet Decision trees 15 / 26

Decision tree

Now that we have defined a splitting rule, let us see
the rest of the tree construction.

Decision tree building
Splitting rule (Variance in regression, Gini or
Entropy in classification)
Stopping rule

(by default, one observation per
leaf)

Stopping rule for splitting a cell:
All samples have the same label (classification)
No reduction of the impurity criterion
The next split will produce cells with less than
min-samples-leaf observations (1, by default)
The cell contains less than min-samples-split
observations (2, by default)

The cell has already been split max-depth times
(∞, by default)

E. Scornet Decision trees 15 / 26

Decision tree

Now that we have defined a splitting rule, let us see
the rest of the tree construction.

Decision tree building
Splitting rule (Variance in regression, Gini or
Entropy in classification)
Stopping rule

(by default, one observation per
leaf)

Stopping rule for splitting a cell:
All samples have the same label (classification)
No reduction of the impurity criterion
The next split will produce cells with less than
min-samples-leaf observations (1, by default)
The cell contains less than min-samples-split
observations (2, by default)
The cell has already been split max-depth times
(∞, by default)

E. Scornet Decision trees 15 / 26

Decision tree

Now that we have defined a splitting and a stopping
rule, let us see the rest of the tree construction.

Decision tree building
Splitting rule (Variance in regression, Gini or
Entropy in classification)
Stopping rule (by default, one observation per
leaf)

E. Scornet Decision trees 15 / 26

Decision tree

Now that we have defined a splitting and a stopping
rule, let us see the rest of the tree construction.

Decision tree building
Splitting rule (Variance in regression, Gini or
Entropy in classification)
Stopping rule (by default, one observation per
leaf)
Prediction rule

(average or majority vote per
leaf)

Prediction rule:

Regression - Average of labels per leaf

t̂n(x) =
n∑

i=1

Yi
1Xi ∈An(x)

Nn(An(x)) (6)

Classification - Majority vote per leaf

t̂n(x) = argmax
k∈{1,...,K}

n∑
i=1

1Yi =k1Xi ∈An(x)

Nn(An(x)) (7)

E. Scornet Decision trees 15 / 26

Decision tree

Now that we have defined a splitting and a stopping
rule, let us see the rest of the tree construction.

Decision tree building
Splitting rule (Variance in regression, Gini or
Entropy in classification)
Stopping rule (by default, one observation per
leaf)
Prediction rule

(average or majority vote per
leaf)

Prediction rule:
Regression - Average of labels per leaf

t̂n(x) =
n∑

i=1

Yi
1Xi ∈An(x)

Nn(An(x)) (6)

Classification - Majority vote per leaf

t̂n(x) = argmax
k∈{1,...,K}

n∑
i=1

1Yi =k1Xi ∈An(x)

Nn(An(x)) (7)

E. Scornet Decision trees 15 / 26

Decision tree

Now that we have defined a splitting and a stopping
rule, let us see the rest of the tree construction.

Decision tree building
Splitting rule (Variance in regression, Gini or
Entropy in classification)
Stopping rule (by default, one observation per
leaf)
Prediction rule

(average or majority vote per
leaf)

Prediction rule:
Regression - Average of labels per leaf

t̂n(x) =
n∑

i=1

Yi
1Xi ∈An(x)

Nn(An(x)) (6)

Classification - Majority vote per leaf

t̂n(x) = argmax
k∈{1,...,K}

n∑
i=1

1Yi =k1Xi ∈An(x)

Nn(An(x)) (7)

E. Scornet Decision trees 15 / 26

Decision tree

Now that we have defined a splitting and a stopping
rule, let us see the rest of the tree construction.

Decision tree building
Splitting rule (Variance in regression, Gini or
Entropy in classification)
Stopping rule (by default, one observation per
leaf)
Prediction rule (average or majority vote per
leaf)

E. Scornet Decision trees 15 / 26

Outline

1 Motivation and general construction

2 Detailed construction
Splitting criterion
Stopping rule and predictions
Categorical features

3 Pruning

4 Final algorithm

E. Scornet Decision trees 16 / 26

Handling different types of features

There exist three main types of features:
Continuous (blood pressure)
Ordinal (Glasgow score)
Nominal (Medical treatments)

Continuous features. The tree above was built on
continuous features: splits are of the form X (j) ≤ s.

Ordinal features. Construction can be directly ex-
tended to ordinal features: splits are exactly of the
same form X (j) ≤ s.

Nominal features. For nominal feature, it makes no
sense to consider such splits: there is no natural order
on treatments.

E. Scornet Decision trees 17 / 26

Handling different types of features

There exist three main types of features:
Continuous (blood pressure)
Ordinal (Glasgow score)
Nominal (Medical treatments)

Continuous features. The tree above was built on
continuous features: splits are of the form X (j) ≤ s.

Ordinal features. Construction can be directly ex-
tended to ordinal features: splits are exactly of the
same form X (j) ≤ s.

Nominal features. For nominal feature, it makes no
sense to consider such splits: there is no natural order
on treatments.

E. Scornet Decision trees 17 / 26

Handling different types of features

There exist three main types of features:
Continuous (blood pressure)
Ordinal (Glasgow score)
Nominal (Medical treatments)

Continuous features. The tree above was built on
continuous features: splits are of the form X (j) ≤ s.

Ordinal features. Construction can be directly ex-
tended to ordinal features: splits are exactly of the
same form X (j) ≤ s.

Nominal features. For nominal feature, it makes no
sense to consider such splits: there is no natural order
on treatments.

E. Scornet Decision trees 17 / 26

Handling different types of features

There exist three main types of features:
Continuous (blood pressure)
Ordinal (Glasgow score)
Nominal (Medical treatments)

Continuous features. The tree above was built on
continuous features: splits are of the form X (j) ≤ s.

Ordinal features. Construction can be directly ex-
tended to ordinal features: splits are exactly of the
same form X (j) ≤ s.

Nominal features. For nominal feature, it makes no
sense to consider such splits: there is no natural order
on treatments.

E. Scornet Decision trees 17 / 26

Nominal features

A nominal features X (j) can take different discrete
values that are not ordered. For example, X (j) can be
the type of treatment, which is surgical, chemical, or
nothing (three different modalities).

E. Scornet Decision trees 18 / 26

Nominal features

A nominal features X (j) can take different discrete
values that are not ordered. For example, X (j) can be
the type of treatment, which is surgical, chemical, or
nothing (three different modalities).

Exhaustive search Letting C the set of all modalities
of a variable, any split along this variable is of the form
C versus C c for any C ⊂ C.

All partitions of modalities in two groups is ad-
missible
Computationally costly / infeasible to evaluate
all these splits for variables with high cardinal-
ity (number of modalities)

E. Scornet Decision trees 18 / 26

Nominal features

A nominal features X (j) can take different discrete
values that are not ordered. For example, X (j) can be
the type of treatment, which is surgical, chemical, or
nothing (three different modalities).

Common practice - One-hot encoding Creating as
many new (dummy) variables as modalities. In our
example, our treatment variable would become

(1, 0, 0) for surgical treatments, (0, 1, 0) for chemical
treatments,

(0, 0, 1) for no treatment

A split is the of the type "one modality" VS "all
other modalities".
More limited number of splits, computationally
appealing but decreases the model predictivity.

E. Scornet Decision trees 18 / 26

Nominal features

A nominal features X (j) can take different discrete
values that are not ordered. For example, X (j) can be
the type of treatment, which is surgical, chemical, or
nothing (three different modalities).

Common practice - One-hot encoding Creating as
many new (dummy) variables as modalities. In our
example, our treatment variable would become

(1, 0, 0) for surgical treatments, (0, 1, 0) for chemical
treatments,

(0, 0, 1) for no treatment

A split is the of the type "one modality" VS "all
other modalities".
More limited number of splits, computationally
appealing but decreases the model predictivity.

One-hot encoding is the most common encoding
method.

E. Scornet Decision trees 18 / 26

A clever encoding: Target encoding

Nominal variables. A classic way to handle them is
via one-hot encoding. Sadly, it limits the predictivity
of the model.

In binary classification, we can do better.

E. Scornet Decision trees 19 / 26

A clever encoding: Target encoding

Nominal variables. A classic way to handle them is
via one-hot encoding. Sadly, it limits the predictivity
of the model.

In binary classification, we can do better.
Choose an impurity (misclassification rate,
entropy or Gini)

E. Scornet Decision trees 19 / 26

A clever encoding: Target encoding

Nominal variables. A classic way to handle them is
via one-hot encoding. Sadly, it limits the predictivity
of the model.

In binary classification, we can do better.
Choose an impurity (misclassification rate,
entropy or Gini)
Consider a nominal variable Xj that can take L
modalities. Reorder it so that the empirical
probabilities in a given cell A satisfy

Pn[Y = 1|Xj = C1, X ∈ A]
≤Pn[Y = 1|Xj = C2, X ∈ A]
≤ . . .

≤Pn[Y = 1|Xj = CL, X ∈ A]. (6)

E. Scornet Decision trees 19 / 26

A clever encoding: Target encoding

Nominal variables. A classic way to handle them is
via one-hot encoding. Sadly, it limits the predictivity
of the model.

In binary classification, we can do better.
Choose an impurity (misclassification rate,
entropy or Gini)
Consider a nominal variable Xj that can take L
modalities. Reorder it so that the empirical
probabilities in a given cell A satisfy

Pn[Y = 1|Xj = C1, X ∈ A]
≤Pn[Y = 1|Xj = C2, X ∈ A]
≤ . . .

≤Pn[Y = 1|Xj = CL, X ∈ A]. (6)
Then the best split (that maximizes the decrease
in impurity) is of the form

Xj ∈ {C1, . . . , Cℓ} vs Xj ∈ {Cℓ+1, . . . , CL}.
(7)

This is a result from Fisher 1958
E. Scornet Decision trees 19 / 26

A clever encoding: Target encoding

Choose an impurity (misclassification rate,
entropy or Gini)
Consider a nominal variable Xj that can take L
modalities. Reorder it so that the empirical
probabilities in a given cell A satisfy

Pn[Y = 1|Xj = C1, X ∈ A]
≤Pn[Y = 1|Xj = C2, X ∈ A]
≤ . . .

≤Pn[Y = 1|Xj = CL, X ∈ A]. (6)
Then the best split (that maximizes the decrease
in impurity) is of the form

Xj ∈ {C1, . . . , Cℓ} vs Xj ∈ {Cℓ+1, . . . , CL}.
(7)

Summary. Finding the optimal split by reordering and
then evaluating L − 1 splits instead of 2L−1 − 1 splits
for exhaustive search (and L splits with suboptimal
decision for one-hot encoding).

E. Scornet Decision trees 19 / 26

A clever encoding: Target encoding

Choose an impurity (misclassification rate,
entropy or Gini)
Consider a nominal variable Xj that can take L
modalities. Reorder it so that the empirical
probabilities in a given cell A satisfy

Pn[Y = 1|Xj = C1, X ∈ A]
≤Pn[Y = 1|Xj = C2, X ∈ A]
≤ . . .

≤Pn[Y = 1|Xj = CL, X ∈ A]. (6)
Then the best split (that maximizes the decrease
in impurity) is of the form

Xj ∈ {C1, . . . , Cℓ} vs Xj ∈ {Cℓ+1, . . . , CL}.
(7)

Extension to regression. The same procedure holds
in regression by considering the average values of Y
for each modality (instead of the probabilities).

E. Scornet Decision trees 19 / 26

Outline

1 Motivation and general construction

2 Detailed construction
Splitting criterion
Stopping rule and predictions
Categorical features

3 Pruning

4 Final algorithm

E. Scornet Decision trees 20 / 26

Generalization / Overfitting
By default, a tree is fully grown, i.e., there

is only one observation per leaf.

What is the training error of such trees?

Fighting overfitting. To prevent this phe-
nomenon from happening, we can limit the
complexity of the method. In decision trees,
this means:

setting parameters to limit the depth
of the tree (min-samples-leaf,
min-samples-split, max-depth)
using pruning strategies, that is build-
ing a fully-grown tree and remove/prune
some branches of the tree to obtain a
simpler tree that generalizes better.

Pruning strategies are always/often
preferred!

→ Stopping the tree construction when the
splitting criterion is low is not a valid strat-
egy.

E. Scornet Decision trees 21 / 26

Generalization / Overfitting
By default, a tree is fully grown, i.e., there

is only one observation per leaf.

What is the training error of such trees?

The training error is exactly zero. The tree
makes perfect prediction on the training set!

Fighting overfitting. To prevent this phe-
nomenon from happening, we can limit the
complexity of the method. In decision trees,
this means:

setting parameters to limit the depth
of the tree (min-samples-leaf,
min-samples-split, max-depth)
using pruning strategies, that is build-
ing a fully-grown tree and remove/prune
some branches of the tree to obtain a
simpler tree that generalizes better.

Pruning strategies are always/often
preferred!

→ Stopping the tree construction when the
splitting criterion is low is not a valid strat-
egy.

E. Scornet Decision trees 21 / 26

Generalization / Overfitting
By default, a tree is fully grown, i.e., there

is only one observation per leaf.

What is the training error of such trees?

The training error is exactly zero. The tree
makes perfect prediction on the training set!

Overfitting. Unfortunately, it is unlikely to
have the same level of performances on new
data. If the test error is very large compared
to the training error, we say that our method
overfits the data.

Fighting overfitting. To prevent this phe-
nomenon from happening, we can limit the
complexity of the method. In decision trees,
this means:

setting parameters to limit the depth
of the tree (min-samples-leaf,
min-samples-split, max-depth)
using pruning strategies, that is build-
ing a fully-grown tree and remove/prune
some branches of the tree to obtain a
simpler tree that generalizes better.

Pruning strategies are always/often
preferred!

→ Stopping the tree construction when the
splitting criterion is low is not a valid strat-
egy.

E. Scornet Decision trees 21 / 26

Generalization / Overfitting

Overfitting. Unfortunately, it is unlikely to
have the same level of performances on new
data. If the test error is very large compared
to the training error, we say that our method
overfits the data.

Fighting overfitting. To prevent this phe-
nomenon from happening, we can limit the
complexity of the method. In decision trees,
this means:

setting parameters to limit the depth
of the tree (min-samples-leaf,
min-samples-split, max-depth)
using pruning strategies, that is build-
ing a fully-grown tree and remove/prune
some branches of the tree to obtain a
simpler tree that generalizes better.

Pruning strategies are always/often
preferred!

→ Stopping the tree construction when the
splitting criterion is low is not a valid strat-
egy.

E. Scornet Decision trees 21 / 26

Generalization / Overfitting

Overfitting. Unfortunately, it is unlikely to
have the same level of performances on new
data. If the test error is very large compared
to the training error, we say that our method
overfits the data.

Fighting overfitting. To prevent this phe-
nomenon from happening, we can limit the
complexity of the method. In decision trees,
this means:

setting parameters to limit the depth
of the tree (min-samples-leaf,
min-samples-split, max-depth)
using pruning strategies, that is build-
ing a fully-grown tree and remove/prune
some branches of the tree to obtain a
simpler tree that generalizes better.

Pruning strategies are always/often
preferred!

→ Stopping the tree construction when the
splitting criterion is low is not a valid strat-
egy.

E. Scornet Decision trees 21 / 26

Generalization / Overfitting

Fighting overfitting. To prevent this phe-
nomenon from happening, we can limit the
complexity of the method. In decision trees,
this means:

setting parameters to limit the depth
of the tree (min-samples-leaf,
min-samples-split, max-depth)
using pruning strategies, that is build-
ing a fully-grown tree and remove/prune
some branches of the tree to obtain a
simpler tree that generalizes better.

Pruning strategies are always/often
preferred!

→ Stopping the tree construction when the
splitting criterion is low is not a valid strat-
egy.

E. Scornet Decision trees 21 / 26

Pruning strategies

Two types of pruning strategies exist:
Reducing Error, consists in removing branches of
the fully-grown tree, based on the error computed
on an extra data set (validation set). Simple but
implies that less data are used for the training of
the tree (first step).
Cost-complexity pruning (CART) is based on a
penalization of the decision tree error via the num-
ber of leaves.

Cost-complexity pruning. Let T0 be the trained fully-
grown tree. We denote by R(T) the risk of any tree
T , defined as either the misclassification rate (1 - ac-
curacy) or the weighted impurity of each one of its
leaves:

R(T) =
∑

A∈Leaf(T)

pAImp(A), (8)

where pA is the proportion of observations falling into
A (usually 1/n).

E. Scornet Decision trees 22 / 26

Pruning strategies

Cost-complexity pruning. Let T0 be the trained fully-
grown tree. We denote by R(T) the risk of any tree
T , defined as either the misclassification rate (1 - ac-
curacy) or the weighted impurity of each one of its
leaves:

R(T) =
∑

A∈Leaf(T)

pAImp(A), (8)

where pA is the proportion of observations falling into
A (usually 1/n).

E. Scornet Decision trees 22 / 26

Pruning strategies

Cost-complexity pruning. Let T0 be the trained fully-
grown tree. We denote by R(T) the risk of any tree
T , defined as either the misclassification rate (1 - ac-
curacy) or the weighted impurity of each one of its
leaves:

R(T) =
∑

A∈Leaf(T)

pAImp(A), (8)

where pA is the proportion of observations falling into
A (usually 1/n).

As mentioned before, for a fully-grown tree T0,
R(T0) = 0 and then does not give a good measure
of predictive performances of T0.

E. Scornet Decision trees 22 / 26

Pruning strategies

Cost-complexity pruning. Let T0 be the trained fully-
grown tree. We denote by R(T) the risk of any tree
T , defined as either the misclassification rate (1 - ac-
curacy) or the weighted impurity of each one of its
leaves:

R(T) =
∑

A∈Leaf(T)

pAImp(A), (8)

where pA is the proportion of observations falling into
A (usually 1/n).

For all α > 0, we define the cost-complexity measure
Rα(T) as

Rα(T) = R(T) + α|Leaf(T)|, (9)
where |Leaf(T)| is the number of leaves in T .

A cross-validation procedure can then be used to select
the best value for α, therefore producing an shallower
tree than T0.

E. Scornet Decision trees 22 / 26

Outline

1 Motivation and general construction

2 Detailed construction
Splitting criterion
Stopping rule and predictions
Categorical features

3 Pruning

4 Final algorithm

E. Scornet Decision trees 23 / 26

Final algorithm

Tree construction
Input: a dataset, an impurity measure.
At each node A, select the best split via

(j⋆, s⋆) ∈ argmax
j∈{1,...,d},s∈range(X (j))

∆Imp(j, s; A).

Repeat for each cell until the leaf contains one
observation
Output: a fully-grown decision tree.

Tree pruning
Input: A fully-grown decision tree, a data set, an
impurity measure.
Choose one of the two pruning strategies:

▶ Reduction Error pruning (RE, C4.5)
▶ Cost complexity pruning (CART)

Output: a pruned decision tree.

Tree prediction Tthe tree prediction at xnew is given
by the average / majority vote among the training ob-
servations falling into the same leaf as xnew .

E. Scornet Decision trees 24 / 26

Final algorithm

Tree construction
Input: a dataset, an impurity measure.
At each node A, select the best split via

(j⋆, s⋆) ∈ argmax
j∈{1,...,d},s∈range(X (j))

∆Imp(j, s; A).

Repeat for each cell until the leaf contains one
observation
Output: a fully-grown decision tree.

Tree pruning
Input: A fully-grown decision tree, a data set, an
impurity measure.
Choose one of the two pruning strategies:

▶ Reduction Error pruning (RE, C4.5)
▶ Cost complexity pruning (CART)

Output: a pruned decision tree.

Tree prediction Tthe tree prediction at xnew is given
by the average / majority vote among the training ob-
servations falling into the same leaf as xnew .

E. Scornet Decision trees 24 / 26

Final algorithm

Tree construction
Input: a dataset, an impurity measure.
At each node A, select the best split via

(j⋆, s⋆) ∈ argmax
j∈{1,...,d},s∈range(X (j))

∆Imp(j, s; A).

Repeat for each cell until the leaf contains one
observation
Output: a fully-grown decision tree.

Tree pruning
Input: A fully-grown decision tree, a data set, an
impurity measure.
Choose one of the two pruning strategies:

▶ Reduction Error pruning (RE, C4.5)
▶ Cost complexity pruning (CART)

Output: a pruned decision tree.

Tree prediction Tthe tree prediction at xnew is given
by the average / majority vote among the training ob-
servations falling into the same leaf as xnew .

E. Scornet Decision trees 24 / 26

Pro/cons

Benefits

Work in classification and regression
Can handle categorical and continuous
features
Interpretable
Invariant by monotonic transformation
of the data
Missing values
Numerical complexity : nd log n
Feature selection / good in high-
dimensional settings

E. Scornet Decision trees 25 / 26

Pro/cons

Benefits

Work in classification and regression
Can handle categorical and continuous
features
Interpretable
Invariant by monotonic transformation
of the data
Missing values
Numerical complexity : nd log n
Feature selection / good in high-
dimensional settings

Drawbacks

Non-robust to small changes in data
Limited approximation capacity
(thresholded nature)

E. Scornet Decision trees 25 / 26

[Fis58] Walter D Fisher. “On grouping for maximum homogeneity”. In: Journal of the
American statistical Association 53.284 (1958), pp. 789–798.

E. Scornet Decision trees 26 / 26

1 Random forests
Bagging and split randomization
Random forest algorithm
Out-of-bag error
Variable importance

2 Tree Boosting
Motivation
General Boosting algorithm
Gradient Boosting Decision Trees

E. Scornet Tree ensemble methods 2 / 46

Tree ensemble methods

Consist in aggregating the predictions of
several decision trees:

More flexible methods / useful for mod-
elling complex input-output relations

More robust than individual trees to
changes in data

E. Scornet Tree ensemble methods 3 / 46

Tree ensemble methods

How to do that?
Random forests (parallel methods)

E. Scornet Tree ensemble methods 3 / 46

Tree ensemble methods

How to do that?
Random forests (parallel methods)
Tree boosting (sequential methods)

E. Scornet Tree ensemble methods 3 / 46

Outline

1 Random forests
Bagging and split randomization
Random forest algorithm
Out-of-bag error
Variable importance

2 Tree Boosting
Motivation
General Boosting algorithm
Gradient Boosting Decision Trees

E. Scornet Tree ensemble methods 4 / 46

Outline

1 Random forests
Bagging and split randomization
Random forest algorithm
Out-of-bag error
Variable importance

2 Tree Boosting
Motivation
General Boosting algorithm
Gradient Boosting Decision Trees

E. Scornet Tree ensemble methods 5 / 46

Tree construction

Tree construction
Input: a dataset, an impurity measure.
At each node A, select the best split via

(j⋆, s⋆) ∈ argmax
j∈{1,...,d},s∈range(X (j))

∆Imp(j, s; A).

Repeat for each cell until each leaf contains one
observation.
Output: a fully-grown decision tree.

Tree pruning
Input: A fully-grown decision tree, a data set, an
impurity measure.
Choose one of the two pruning strategies:

▶ Reduction Error pruning (RE, C4.5)
▶ Cost complexity pruning (CART)

Output: a pruned decision tree.

E. Scornet Tree ensemble methods 6 / 46

Tree construction in random forests

Tree construction
Input: a dataset, an impurity measure.
At each node A, select the best split via

(j⋆, s⋆) ∈ argmax
j∈{1,...,d},s∈range(X (j))

∆Imp(j, s; A).

Repeat for each cell until each leaf contains one
observation.
Output: a fully-grown decision tree.

Tree pruning
For trees in random forests, no pruning strategy

E. Scornet Tree ensemble methods 6 / 46

Tree construction

Tree construction
Input: a dataset, an impurity measure.
At each node A, select the best split via

(j⋆, s⋆) ∈ argmax
j∈{1,...,d},s∈range(X (j))

∆Imp(j, s; A).

Repeat for each cell until each leaf contains one
observation.
Output: a fully-grown decision tree.

Tree pruning
For trees in random forests, no pruning strategy

Such trees have a small bias (fully-grown) but a large
variance (one point per leaf).

They cannot be used as single estimators!

E. Scornet Tree ensemble methods 6 / 46

Bagging - Averaging predictors via data set resampling

Bagging (Bootstrap aggregating) consists
in running a learning algorithm on mulit-
ple modified data sets to stabilize its perfor-
mance.

E. Scornet Tree ensemble methods 7 / 46

Bagging - Averaging predictors via data set resampling

Bagging (Bootstrap aggregating) consists
in running a learning algorithm on mulit-
ple modified data sets to stabilize its perfor-
mance.

Bootstrap. A sampling scheme that consists
in drawing n observations with replacement
among the n original ones. Applied once,
bootstrap creates one new data set, called
a bootstrapped data set.

E. Scornet Tree ensemble methods 7 / 46

Bagging - Averaging predictors via data set resampling

E. Scornet Tree ensemble methods 7 / 46

Bagging - Averaging predictors via data set resampling

E. Scornet Tree ensemble methods 7 / 46

Bagging - Averaging predictors via data set resampling

E. Scornet Tree ensemble methods 7 / 46

Bagging - Averaging predictors via data set resampling

E. Scornet Tree ensemble methods 7 / 46

Bagging - Averaging predictors via data set resampling

Interests:
Increase stability - data modification has
less impact on the final predictor
Parallel method - computationnally effi-
cient
Can be applied to a wide range of
learning algorithm (for example, decision
trees!)

Inconvenient: individual predictors may be
too correlated (built on similar observa-
tions).

E. Scornet Tree ensemble methods 7 / 46

Split randomization in tree construction

Random forests
Two randomization ingredients:

Bagging
Split randomization

E. Scornet Tree ensemble methods 8 / 46

Split randomization in tree construction

Regular split selection. In each cell of a
tree, select the best split, by optimizing the
splitting criterion along all directions.

E. Scornet Tree ensemble methods 8 / 46

Split randomization in tree construction

Regular split selection. In each cell of a
tree, select the best split, by optimizing the
splitting criterion along all directions.

E. Scornet Tree ensemble methods 8 / 46

Split randomization in tree construction

Regular split selection. In each cell of a
tree, select the best split, by optimizing the
splitting criterion along all directions.

E. Scornet Tree ensemble methods 8 / 46

Split randomization in tree construction

Regular split selection. In each cell of a
tree, select the best split, by optimizing the
splitting criterion along all directions.

E. Scornet Tree ensemble methods 8 / 46

Split randomization in tree construction

Regular split selection. In each cell of a
tree, select the best split, by optimizing the
splitting criterion along all directions.

E. Scornet Tree ensemble methods 8 / 46

Split randomization in tree construction

Regular split selection. In each cell of a
tree, select the best split, by optimizing the
splitting criterion along all directions.

E. Scornet Tree ensemble methods 8 / 46

Split randomization in tree construction

Regular split selection. In each cell of a
tree, select the best split, by optimizing the
splitting criterion along all directions.

E. Scornet Tree ensemble methods 8 / 46

Split randomization in tree construction

Regular split selection. In each cell of a
tree, select the best split, by optimizing the
splitting criterion along all directions.

E. Scornet Tree ensemble methods 8 / 46

Split randomization in tree construction

Regular split selection. In each cell of a
tree, select the best split, by optimizing the
splitting criterion along all directions.

E. Scornet Tree ensemble methods 8 / 46

Split randomization in tree construction

Regular split selection. In each cell of a
tree, select the best split, by optimizing the
splitting criterion along all directions.

E. Scornet Tree ensemble methods 8 / 46

Split randomization in tree construction

Regular split selection. In each cell of a
tree, select the best split, by optimizing the
splitting criterion along all directions.

E. Scornet Tree ensemble methods 8 / 46

Split randomization in tree construction

Regular split selection. In each cell of a
tree, select the best split, by optimizing the
splitting criterion along all directions.

E. Scornet Tree ensemble methods 8 / 46

Split randomization in tree construction

Regular split selection. In each cell of a
tree, select the best split, by optimizing the
splitting criterion along all directions.

E. Scornet Tree ensemble methods 8 / 46

Split randomization in tree construction

Regular split selection. In each cell of a
tree, select the best split, by optimizing the
splitting criterion along all directions.

E. Scornet Tree ensemble methods 8 / 46

Split randomization in tree construction

Regular split selection. In each cell of a
tree, select the best split, by optimizing the
splitting criterion along all directions.

E. Scornet Tree ensemble methods 8 / 46

Split randomization in tree construction

Regular split selection. In each cell of a
tree, select the best split, by optimizing the
splitting criterion along all directions.

E. Scornet Tree ensemble methods 8 / 46

Split randomization in tree construction

Regular split selection. In each cell of a
tree, select the best split, by optimizing the
splitting criterion along all directions.

E. Scornet Tree ensemble methods 8 / 46

Split randomization in tree construction

Regular split selection. In each cell of a
tree, select the best split, by optimizing the
splitting criterion along all directions.

E. Scornet Tree ensemble methods 8 / 46

Split randomization in tree construction

Regular split selection. In each cell of a
tree, select the best split, by optimizing the
splitting criterion along all directions.

E. Scornet Tree ensemble methods 8 / 46

Split randomization in tree construction

Regular split selection. In each cell of a
tree, select the best split, by optimizing the
splitting criterion along all directions.

E. Scornet Tree ensemble methods 8 / 46

Split randomization in tree construction

Regular split selection. In each cell of a
tree, select the best split, by optimizing the
splitting criterion along all directions.

E. Scornet Tree ensemble methods 8 / 46

Split randomization in tree construction

Regular split selection. In each cell of a
tree, select the best split, by optimizing the
splitting criterion along all directions.

E. Scornet Tree ensemble methods 8 / 46

Split randomization in tree construction

Split randomization.
In each cell of a tree, select uniformly at ran-
dom a prespecified number of directions.
Select the best split (by optimizing the split-
ting criterion) along these directions only.

E. Scornet Tree ensemble methods 8 / 46

Split randomization in tree construction

Split randomization.
In each cell of a tree, select uniformly at ran-
dom a prespecified number of directions.
Select the best split (by optimizing the split-
ting criterion) along these directions only.

Here, for example, randomly selecting the
first direction (variable X (1)) leads to consid-
ering the following splits only.

E. Scornet Tree ensemble methods 8 / 46

Split randomization in tree construction

Split randomization.
In each cell of a tree, select uniformly at ran-
dom a prespecified number of directions.
Select the best split (by optimizing the split-
ting criterion) along these directions only.

Here, for example, randomly selecting the
first direction (variable X (1)) leads to consid-
ering the following splits only.

E. Scornet Tree ensemble methods 8 / 46

Split randomization in tree construction

Split randomization.
In each cell of a tree, select uniformly at ran-
dom a prespecified number of directions.
Select the best split (by optimizing the split-
ting criterion) along these directions only.

Here, for example, randomly selecting the
first direction (variable X (1)) leads to consid-
ering the following splits only.

E. Scornet Tree ensemble methods 8 / 46

Split randomization in tree construction

Split randomization.
In each cell of a tree, select uniformly at ran-
dom a prespecified number of directions.
Select the best split (by optimizing the split-
ting criterion) along these directions only.

Here, for example, randomly selecting the
first direction (variable X (1)) leads to consid-
ering the following splits only.

E. Scornet Tree ensemble methods 8 / 46

Split randomization in tree construction

Split randomization.
In each cell of a tree, select uniformly at ran-
dom a prespecified number of directions.
Select the best split (by optimizing the split-
ting criterion) along these directions only.

Here, for example, randomly selecting the
first direction (variable X (1)) leads to consid-
ering the following splits only.

E. Scornet Tree ensemble methods 8 / 46

Split randomization in tree construction

Split randomization.
In each cell of a tree, select uniformly at ran-
dom a prespecified number of directions.
Select the best split (by optimizing the split-
ting criterion) along these directions only.

Here, for example, randomly selecting the
first direction (variable X (1)) leads to consid-
ering the following splits only.

E. Scornet Tree ensemble methods 8 / 46

Split randomization in tree construction

Split randomization.
In each cell of a tree, select uniformly at ran-
dom a prespecified number of directions.
Select the best split (by optimizing the split-
ting criterion) along these directions only.

Here, for example, randomly selecting the
first direction (variable X (1)) leads to consid-
ering the following splits only.

E. Scornet Tree ensemble methods 8 / 46

Split randomization in tree construction

Split randomization.
In each cell of a tree, select uniformly at ran-
dom a prespecified number of directions.
Select the best split (by optimizing the split-
ting criterion) along these directions only.

Here, for example, randomly selecting the
first direction (variable X (1)) leads to consid-
ering the following splits only.

E. Scornet Tree ensemble methods 8 / 46

Split randomization in tree construction

Split randomization.
In each cell of a tree, select uniformly at ran-
dom a prespecified number of directions.
Select the best split (by optimizing the split-
ting criterion) along these directions only.

Here, for example, randomly selecting the
first direction (variable X (1)) leads to consid-
ering the following splits only.

E. Scornet Tree ensemble methods 8 / 46

Split randomization in tree construction

Split randomization.
In each cell of a tree, select uniformly at ran-
dom a prespecified number of directions.
Select the best split (by optimizing the split-
ting criterion) along these directions only.

Here, for example, randomly selecting the
first direction (variable X (1)) leads to consid-
ering the following splits only.

E. Scornet Tree ensemble methods 8 / 46

Split randomization in tree construction

Split randomization.
In each cell of a tree, select uniformly at ran-
dom a prespecified number of directions.
Select the best split (by optimizing the split-
ting criterion) along these directions only.

Here, for example, randomly selecting the
first direction (variable X (1)) leads to consid-
ering the following splits only.

E. Scornet Tree ensemble methods 8 / 46

Split randomization in tree construction

Split randomization.
In each cell of a tree, select uniformly at ran-
dom a prespecified number of directions.
Select the best split (by optimizing the split-
ting criterion) along these directions only.

Here, for example, randomly selecting the
first direction (variable X (1)) leads to select-
ing this split.

E. Scornet Tree ensemble methods 8 / 46

Split randomization in tree construction

Split randomization.
In each cell of a tree, select uniformly at ran-
dom a prespecified number of directions.
Select the best split (by optimizing the split-
ting criterion) along these directions only.

The same procedure is repeated on the re-
sulting cells, with a new random choice of
the splitting directions.

E. Scornet Tree ensemble methods 8 / 46

Outline

1 Random forests
Bagging and split randomization
Random forest algorithm
Out-of-bag error
Variable importance

2 Tree Boosting
Motivation
General Boosting algorithm
Gradient Boosting Decision Trees

E. Scornet Tree ensemble methods 9 / 46

Construction of random forests

E. Scornet Tree ensemble methods 10 / 46

Construction of random forests

E. Scornet Tree ensemble methods 10 / 46

Construction of random forests

E. Scornet Tree ensemble methods 10 / 46

Construction of random forests

E. Scornet Tree ensemble methods 10 / 46

Construction of random forests

E. Scornet Tree ensemble methods 10 / 46

Construction of Breiman forests

Build in parallel n-estimators CART as follows.

CART
▶ Bootstrap - Select max-samples observations with replacement among the original sample

Dn. Use only these observations to build the tree.
▶ For each cell,

⋆ Select randomly max-features coordinates among {1, . . . , d};
⋆ Choose the best split along previous directions, based on the choosen criterion (impurity

measure).

▶ Stop splitting each cell when all observations inside it have the same label or when a stopping
criterion is met:

⋆ there are less than min-sample-leaf observation in the leaf
⋆ resulting cells would contain less than min-sample-split observation
⋆ cell is already split max-depth times
⋆ there are already max-leaf-nodes leaves

Compute the forest prediction by averaging the predictions of all trees.

E. Scornet Tree ensemble methods 11 / 46

List of all random forest hyperparameters

See Scikit-learn documentation for
more details: RandomForestRegressor /
RandomForestClassifier.

E. Scornet Tree ensemble methods 12 / 46

List of all random forest hyperparameters

See Scikit-learn documentation for
more details: RandomForestRegressor /
RandomForestClassifier.

List of all hyperparameters in the forest:
n-estimators = 100
criterion=’gini’
max-depth=None,
min-samples-split = 2,
min-samples-leaf = 1,
min-weight-fraction-leaf = 0.0,
min-impurity-decrease = 0.0,
max-leaf-nodes=None
→ By default, trees are fully grown with
no pruning strategy
max-features=’sqrt’ (classif.) ’None’
(regression).
bootstrap=True, max-samples=None

E. Scornet Tree ensemble methods 12 / 46

List of all random forest hyperparameters

See Scikit-learn documentation for
more details: RandomForestRegressor /
RandomForestClassifier.

Remarks.
Due to bootstrap and split randomiza-
tion, running twice RF may lead to dif-
ferent results. Increasing the number of
trees limits this difference.
Fixing a random-state makes two runs
of RF identical.
Beware, by default, split randomization
is used in classification but not in regres-
sion!

E. Scornet Tree ensemble methods 12 / 46

Role of each hyperparameter

Number of trees.
Larger values are better
No statistical tradeoff between low and
high values
Limited by computational power - grow-
ing many trees is expensive
Default values (several hundreds / thou-
sands) usually do a good job

E. Scornet Tree ensemble methods 13 / 46

Role of each hyperparameter

Bootstrap size / tree shape.
Control the bias/variance tradeoff: small
bootstrap size / shallow trees lead to
predictors with a large bias but a small
variance
Use small bootstrap size or shallow tree
if data are very noisy
Use default setting for modelling very
complex phenomenon

→ Precise tuning can help but default
values are good in general

E. Scornet Tree ensemble methods 13 / 46

Role of each hyperparameter

Split randomization
Most complex parameter to tune
Small values of max-features lead to
very different trees
→ max-features=1 corresponds to
drawing randomly the splitting direction
Large values of max-features lead to
similar trees
→ max-features=d corresponds to
building the same tree (if no bootstrap
is used)
No precise heuristic, can be tuned by
cross-validation.

E. Scornet Tree ensemble methods 13 / 46

Outline

1 Random forests
Bagging and split randomization
Random forest algorithm
Out-of-bag error
Variable importance

2 Tree Boosting
Motivation
General Boosting algorithm
Gradient Boosting Decision Trees

E. Scornet Tree ensemble methods 14 / 46

Out-of-bag error

Idea. Evaluate the error of a random forest
using the fact that each observation has not
been used in all tree constructions and can
thus be used as test points for such aggre-
gated trees.

E. Scornet Tree ensemble methods 15 / 46

Out-of-bag error

Idea. Evaluate the error of a random forest
using the fact that each observation has not
been used in all tree constructions and can
thus be used as test points for such aggre-
gated trees.

General procedure (short):
Consider that a forest has been trained
on the data set Dn.
For each observation i ∈ {1, . . . , n},

▶ Consider the bootstrap samples that
do not contain this observation.

▶ For the trees that are not built using
observation i , compute the predictions
at Xi and aggregate them. Compute
the loss of such an aggregated predic-
tion.

Compute the Out-of-bag error by
averaging the losses over all
observations.

E. Scornet Tree ensemble methods 15 / 46

Out-of-bag error

Benefits:
No need for dividing the data set into a
train and a test set
Easily parallelizable
Asymptotically equivalent to the risk of
the forest for large M.

Drawback:
Do not compute exactly the error of the
whole forest but rather the aggregated
error of some trees in the forest.

E. Scornet Tree ensemble methods 15 / 46

Out-of-bag procedure

E. Scornet Tree ensemble methods 16 / 46

Out-of-bag procedure

E. Scornet Tree ensemble methods 16 / 46

Out-of-bag procedure

E. Scornet Tree ensemble methods 16 / 46

Out-of-bag procedure

E. Scornet Tree ensemble methods 16 / 46

Out-of-bag procedure

E. Scornet Tree ensemble methods 16 / 46

Out-of-bag procedure

E. Scornet Tree ensemble methods 16 / 46

Out-of-bag procedure

E. Scornet Tree ensemble methods 16 / 46

Out-of-bag procedure

E. Scornet Tree ensemble methods 16 / 46

Out-of-bag procedure

E. Scornet Tree ensemble methods 16 / 46

Out-of-bag procedure

E. Scornet Tree ensemble methods 16 / 46

Out-of-bag procedure

E. Scornet Tree ensemble methods 16 / 46

Out-of-bag procedure

E. Scornet Tree ensemble methods 16 / 46

Out-of-bag procedure

E. Scornet Tree ensemble methods 16 / 46

Out-of-bag procedure

E. Scornet Tree ensemble methods 16 / 46

Out-of-bag procedure

E. Scornet Tree ensemble methods 16 / 46

Out-of-bag procedure

E. Scornet Tree ensemble methods 16 / 46

Out-of-bag (detailed procedure)

Consider that a forest has been trained on the data set Dn.
For each observation i ∈ {1, . . . , n},

▶ Consider the bootstrap samples that do not contain this observation, that is the set
Λi,n = {m, (Xi , Yi) /∈ D̃m,n}

▶ For the trees that are not built using observation i , compute the prediction at Xi and
aggregate them as

f (OOB)
M,n (Xi) =

1
|Λi,n|

∑
m∈Λn,i

tn(Xi , Θm)1|Λn,i |>0 in regression,

= argmax
k∈{1,...,K}

∑
ℓ∈Λn,i

1tn(Xi ,Θℓ)=k in classification.

▶ Compute the associated loss
ℓ(f (OOB)

M,n (Xi), Yi) = (f (OOB)
M,n (Xi) − Yi)2 in regression,

= ℓ(f (OOB)
M,n (Xi), Yi) = 1

f (OOB)
M,n (Xi) ̸=Yi

in classification.

Compute the Out-of-bag error by averaging the losses over all observations, that is

ROOB
n = 1

n

n∑
i=1

ℓ(f (OOB)
M,n (Xi), Yi)

E. Scornet Tree ensemble methods 17 / 46

Outline

1 Random forests
Bagging and split randomization
Random forest algorithm
Out-of-bag error
Variable importance

2 Tree Boosting
Motivation
General Boosting algorithm
Gradient Boosting Decision Trees

E. Scornet Tree ensemble methods 18 / 46

Variable importance via random forests

0.0 0.1 0.2 0.3 0.4 0.5

Average number of bedrooms

Block population

Average number of rooms

Median house age in block

House block longitude

House block latitude

Average house occupancy

Median income in block

Feature importances using MDI

Figure: One of the two variable importance
measure, Mean Decrease in Impurity (MDI)
computed on the California housing data set.

0.0 0.2 0.4 0.6 0.8

Block population

Average number of bedrooms

Average number of rooms

Median house age in block

Average house occupancy

House block longitude

House block latitude

Median income in block

Feature importances using MDA

Figure: One of the two variable importance
measure, Mean Decrease in Accuracy (MDA)
computed on the California housing data set.

E. Scornet Tree ensemble methods 19 / 46

Variable importance via random forests

0.0 0.1 0.2 0.3 0.4 0.5

Average number of bedrooms

Block population

Average number of rooms

Median house age in block

House block longitude

House block latitude

Average house occupancy

Median income in block

Feature importances using MDI

0.0 0.2 0.4 0.6 0.8

Block population

Average number of bedrooms

Average number of rooms

Median house age in block

Average house occupancy

House block longitude

House block latitude

Median income in block

Feature importances using MDA

Going beyond prediction to understand
the black-box model
Finding the input variables that are the
most “linked” to the output
Here the variable ranking is not exactly
the same across these two different mea-
sures.

E. Scornet Tree ensemble methods 19 / 46

Variable importance - to what aim?

One single good variable importance
measure does not exist. It always depend

on what it is used for.

A simple example. Assume that X ∈
R10, Y ∈ R and Y = X1 with X1 =
g(X2, . . . , X10) for some function g .

(Variable selection) If one is interested in
finding the smallest set of variables lead-
ing to good predictive performance, the
associated variable importance should be
large for X1 and null for X2, . . . , X10.

(Link identification) If one is interested
in finding all variables linked to the out-
put, the associated variable importance
should be large for X1, . . . , Xd .

The quality of a variable importance measure
depends on its final use (variable selection or
link identification).

E. Scornet Tree ensemble methods 20 / 46

Variable importance in random forests

Two different measures often computed with
random forests:

Mean Decrease Impurity (MDI)
(Breiman, 2002)

▶ Tailored for decision tree methods
▶ Use the decrease in impurity in each

node to compute an aggregated vari-
able importance

Mean Decrease Accuracy (MDA) (also
called permutation importance, see
Breiman, 2001)

▶ Can be used with any supervised learn-
ing algorithm (not tree specific)

▶ Permute the values of a given feature
in the test set and compare the result-
ing decrease in predictive performance.

E. Scornet Tree ensemble methods 21 / 46

Mean Decrease in impurity

For this given trained tree T , we want to evaluate the MDI of X (1).

E. Scornet Tree ensemble methods 22 / 46

Mean Decrease in impurity

For this given trained tree T , we want to evaluate the MDI of X (1). We proceed as
follows:

Identify all splits that involve variable X (1)

E. Scornet Tree ensemble methods 22 / 46

Mean Decrease in impurity

For this given trained tree T , we want to evaluate the MDI of X (1). We proceed as
follows:

Identify all splits that involve variable X (1)

For each split, compute the decrease in impurity between the parent node A and
the two resulting nodes AL and AR :

∆Impn(A) = Impn(A) − pL,nImpn(AL) − pR,nImpn(AR),
where pL,n (resp. pR,n) is the fraction of observations in A that fall into AL (resp.
AR). For example,

ImpV ,n(A) = Vn[Y |X ∈ A].
E. Scornet Tree ensemble methods 22 / 46

Mean Decrease in impurity

For this given trained tree T , we want to evaluate the MDI of X (1). We proceed as
follows:

Identify all splits that involve variable X (1)

For each split, compute the decrease in impurity between the parent node A and
the two resulting nodes AL and AR :

∆Impn(A) = Impn(A) − pL,nImpn(AL) − pR,nImpn(AR),
where pL,n (resp. pR,n) is the fraction of observations in A that fall into AL (resp.
AR). For example,

ImpV ,n(A) = Vn[Y |X ∈ A].
E. Scornet Tree ensemble methods 22 / 46

Mean Decrease in impurity

For this given trained tree T , we want to evaluate the MDI of X (1). We proceed as
follows:

Identify all splits that involve variable X (1)

For each split, compute the decrease in impurity between the parent node A and
the two resulting nodes AL and AR :

∆Impn(A) = Impn(A) − pL,nImpn(AL) − pR,nImpn(AR),
where pL,n (resp. pR,n) is the fraction of observations in A that fall into AL (resp.
AR). For example,

ImpV ,n(A) = Vn[Y |X ∈ A].
E. Scornet Tree ensemble methods 22 / 46

Mean Decrease in impurity

For this given trained tree T , we want to evaluate the MDI of X (1). We proceed as
follows:

Identify all splits that involve variable X (1)

For each split, compute the decrease in impurity ∆Impn(A) between the parent node
A and the two resulting nodes AL and AR

The MDI of X (1) computed via this tree T is
M̂DIT (X (j)) =

∑
A∈T

jn,A=1

pn,A ∆Impn(A), (1)

where the sum ranges over all cells A in T that are split along variable j and pA,n is
the fraction of observations falling into A

E. Scornet Tree ensemble methods 22 / 46

Mean Decrease in impurity

For this given trained tree T , we want to evaluate the MDI of X (1). We proceed as
follows:

Identify all splits that involve variable X (1)

For each split, compute the decrease in impurity ∆Impn(A) between the parent node
A and the two resulting nodes AL and AR

The MDI of X (1) computed via this tree T is
M̂DIT (X (j)) =

∑
A∈T

jn,A=1

pn,A ∆Impn(A) (1)

The MDI of X (1) output by a forest is the average of the MDI of X (1) of each tree.

E. Scornet Tree ensemble methods 22 / 46

Mean Decrease in Impurity

Pros
Easily accessible via scikit-learn as the
attribute feature-importances- of a
RandomForest object
No extra computations needed
Adapted to the tree building process /
the predictor

E. Scornet Tree ensemble methods 23 / 46

Mean Decrease in Impurity

Cons
biased towards variables with many cat-
egories (see, e.g., Strobl et al., 2007;
Nicodemus, 2011), variables that pos-
sess high-category frequency (Nicode-
mus, 2011; Boulesteix et al., 2011), bi-
ased in presence of correlated features
(Nicodemus and Malley, 2009)
Bias related to in-sample estimation (Li
et al., 2019; Zhou and Hooker, 2021) -
Same observations are used to build the
tree and estimate the MDI
Bias related to fully-grown tree
No information about the quantity it is
supposed to estimate!

E. Scornet Tree ensemble methods 23 / 46

MDA illustration

MDA principle: decrease of accuracy of the
forest when a variable is noised up

X (1) X (2) . . . X (j) . . . X (p) Y
2.1 4.3 . . . 0.1 . . . 2.6 2.3
1.7 4.1 . . . 9.2 . . . 3.8 0.4
3.4 9.2 . . . 3.2 . . . 3.6 10.2
5.6 1.2 . . . 8.2 . . . 4.2 9.1
8.9 6.8 . . . 6.7 . . . 2.9 4.5

Table: Example of the permutation of a dataset
Dn for n = 5.

quadratic error = 13.7
quadratic error = 16.4

MDA(X (j)) = 16.4 − 13.7 = 2.7

E. Scornet Tree ensemble methods 24 / 46

MDA illustration

MDA principle: decrease of accuracy of the
forest when a variable is noised up

X (1) X (2) . . . X (j) . . . X (p) Y
2.1 4.3 . . . 0.1 . . . 2.6 2.3
1.7 4.1 . . . 9.2 . . . 3.8 0.4
3.4 9.2 . . . 3.2 . . . 3.6 10.2
5.6 1.2 . . . 8.2 . . . 4.2 9.1
8.9 6.8 . . . 6.7 . . . 2.9 4.5

Table: Example of the permutation of a dataset
Dn for n = 5.

quadratic error = 13.7
quadratic error = 16.4

MDA(X (j)) = 16.4 − 13.7 = 2.7

E. Scornet Tree ensemble methods 24 / 46

MDA illustration

MDA principle: decrease of accuracy of the
forest when a variable is noised up

X (1) X (2) . . . X (j) . . . X (p) Y
2.1 4.3 . . . 0.1 . . . 2.6 2.3
1.7 4.1 . . . 9.2 . . . 3.8 0.4
3.4 9.2 . . . 3.2 . . . 3.6 10.2
5.6 1.2 . . . 8.2 . . . 4.2 9.1
8.9 6.8 . . . 6.7 . . . 2.9 4.5

X (1) X (2) . . . X (j) . . . X (p) Y
2.1 4.3 . . . 6.7 . . . 2.6 2.3
1.7 4.1 . . . 3.2 . . . 3.8 0.4
3.4 9.2 . . . 9.2 . . . 3.6 10.2
5.6 1.2 . . . 0.1 . . . 4.2 9.1
8.9 6.8 . . . 8.2 . . . 2.9 4.5

Table: Example of the permutation of a dataset
Dn for n = 5.

quadratic error = 13.7
quadratic error = 16.4

MDA(X (j)) = 16.4 − 13.7 = 2.7

E. Scornet Tree ensemble methods 24 / 46

MDA illustration

MDA principle: decrease of accuracy of the
forest when a variable is noised up

X (1) X (2) . . . X (j) . . . X (p) Y
2.1 4.3 . . . 0.1 . . . 2.6 2.3
1.7 4.1 . . . 9.2 . . . 3.8 0.4
3.4 9.2 . . . 3.2 . . . 3.6 10.2
5.6 1.2 . . . 8.2 . . . 4.2 9.1
8.9 6.8 . . . 6.7 . . . 2.9 4.5

X (1) X (2) . . . X (j) . . . X (p) Y
2.1 4.3 . . . 6.7 . . . 2.6 2.3
1.7 4.1 . . . 3.2 . . . 3.8 0.4
3.4 9.2 . . . 9.2 . . . 3.6 10.2
5.6 1.2 . . . 0.1 . . . 4.2 9.1
8.9 6.8 . . . 8.2 . . . 2.9 4.5

quadratic error = 13.7
quadratic error = 16.4

MDA(X (j)) = 16.4 − 13.7 = 2.7
E. Scornet Tree ensemble methods 24 / 46

MDA versions

The explained variance estimate of MDA al-
gorithms differ across implementations

Train-Test MDA: train data to fit the forest,
and test data for accuracy

Out-of-bag (OOB) samples: Dn is boot-
strap prior to the construction of each tree,
leaving aside a portion of Dn, which is not
involved in the tree growing and defines the
“out-of-bag” sample.

E. Scornet Tree ensemble methods 25 / 46

MDA versions

The explained variance estimate of MDA al-
gorithms differ across implementations

Train-Test MDA: train data to fit the forest,
and test data for accuracy

Out-of-bag (OOB) samples: Dn is boot-
strap prior to the construction of each tree,
leaving aside a portion of Dn, which is not
involved in the tree growing and defines the
“out-of-bag” sample.

X (1) X (2) . . . X (j) . . . X (p) Y
2.1 4.3 . . . 0.1 . . . 2.6 2.3
1.7 4.1 . . . 9.2 . . . 3.8 0.4
3.4 9.2 . . . 3.2 . . . 3.6 10.2
5.6 1.2 . . . 8.2 . . . 4.2 9.1
8.9 6.8 . . . 6.7 . . . 2.9 4.5

Selected samples: Θ(S)
ℓ = {1, 3, 4}

E. Scornet Tree ensemble methods 25 / 46

MDA versions

The explained variance estimate of MDA al-
gorithms differ across implementations

Train-Test MDA: train data to fit the forest,
and test data for accuracy

Out-of-bag (OOB) samples: Dn is boot-
strap prior to the construction of each tree,
leaving aside a portion of Dn, which is not
involved in the tree growing and defines the
“out-of-bag” sample.

X (1) X (2) . . . X (j) . . . X (p) Y
2.1 4.3 . . . 0.1 . . . 2.6 2.3
1.7 4.1 . . . 9.2 . . . 3.8 0.4
3.4 9.2 . . . 3.2 . . . 3.6 10.2
5.6 1.2 . . . 8.2 . . . 4.2 9.1
8.9 6.8 . . . 6.7 . . . 2.9 4.5

OOB samples: {1, . . . , n} \ Θ(S)
ℓ = {2, 5}

E. Scornet Tree ensemble methods 25 / 46

Mean Decrease in Accuracy

Pros
Can be applied to any machine
learning algorithm via the function
permutation-importance in scikit-
learn
Fast to compute (no need to retrain a
forest)

Cons
Biased in presence of correlation
The quantity to which it converges is not
the correct for either of the two objec-
tives (designing a small model with high
predictivity or finding a large set of vari-
ables linked to the output)

E. Scornet Tree ensemble methods 26 / 46

Take-home message on variable importance

Do not use MDI or MDA!
We do not know what quantity they are

targeting

E. Scornet Tree ensemble methods 27 / 46

Take-home message on variable importance

Some alternatives:
MDI

▶ Out-of-sample estimation (Li et al.,
2019; Zhou and Hooker, 2021;
Loecher, 2022) with code in python:
https://github.com/ZhengzeZhou/

unbiased-feature-importance

MDA
▶ Rerun the model without a given co-

variate (expensive). Work for any pre-
dictive model (Williamson et al., 2021)

▶ Use the tree structure to remove a vari-
able from the model without needing
to rerun it (Bénard et al., 2022)

E. Scornet Tree ensemble methods 27 / 46

https://github.com/ZhengzeZhou/unbiased-feature-importance
https://github.com/ZhengzeZhou/unbiased-feature-importance

Take-home message on variable importance

Some alternatives:
MDI

▶ Out-of-sample estimation (Li et al.,
2019; Zhou and Hooker, 2021;
Loecher, 2022) with code in python:
https://github.com/ZhengzeZhou/

unbiased-feature-importance

MDA
▶ Rerun the model without a given co-

variate (expensive). Work for any pre-
dictive model (Williamson et al., 2021)

▶ Use the tree structure to remove a vari-
able from the model without needing
to rerun it (Bénard et al., 2022)

Anyway, remember to check the predictive
performance of a model: it it is low, the
model is useless and variable importances

are misleading.

E. Scornet Tree ensemble methods 27 / 46

https://github.com/ZhengzeZhou/unbiased-feature-importance
https://github.com/ZhengzeZhou/unbiased-feature-importance

Outline

1 Random forests
Bagging and split randomization
Random forest algorithm
Out-of-bag error
Variable importance

2 Tree Boosting
Motivation
General Boosting algorithm
Gradient Boosting Decision Trees

E. Scornet Tree ensemble methods 28 / 46

Outline

1 Random forests
Bagging and split randomization
Random forest algorithm
Out-of-bag error
Variable importance

2 Tree Boosting
Motivation
General Boosting algorithm
Gradient Boosting Decision Trees

E. Scornet Tree ensemble methods 29 / 46

What is Boosting?

Boosting:
Combining weak predictors (classifica-
tion/regression) in a sequential manner
to obtain an aggregated predictor better
than each individual predictor
The predictor resulting from boosting is
a weighted average of some weak predic-
tors, resulting from a learning algorithm
applied to a modified dataset.

What do we need?
A data set
Dn = {(X1, Y1), . . . , (Xn, Yn)}
A weak learning procedure

▶ Decision tree (CART) → Tree
Boosting

▶ Linear models
▶ ...

A loss

E. Scornet Tree ensemble methods 30 / 46

What is Boosting?

Boosting:
Combining weak predictors (classifica-
tion/regression) in a sequential manner
to obtain an aggregated predictor better
than each individual predictor
The predictor resulting from boosting is
a weighted average of some weak predic-
tors, resulting from a learning algorithm
applied to a modified dataset.

What do we need?
A data set
Dn = {(X1, Y1), . . . , (Xn, Yn)}
A weak learning procedure

▶ Decision tree (CART) → Tree
Boosting

▶ Linear models
▶ ...

A loss

E. Scornet Tree ensemble methods 30 / 46

Boosting in a scheme

E. Scornet Tree ensemble methods 31 / 46

Boosting in a scheme

E. Scornet Tree ensemble methods 31 / 46

Boosting in a scheme

E. Scornet Tree ensemble methods 31 / 46

Boosting in a scheme

E. Scornet Tree ensemble methods 31 / 46

Boosting in a scheme

E. Scornet Tree ensemble methods 31 / 46

Boosting in a scheme

E. Scornet Tree ensemble methods 31 / 46

Boosting in a scheme

E. Scornet Tree ensemble methods 31 / 46

Boosting in a scheme

E. Scornet Tree ensemble methods 31 / 46

Boosting in a scheme

E. Scornet Tree ensemble methods 31 / 46

Boosting in a scheme

E. Scornet Tree ensemble methods 31 / 46

Boosting in a scheme

E. Scornet Tree ensemble methods 31 / 46

Boosting in a scheme

E. Scornet Tree ensemble methods 31 / 46

Boosting in a scheme

E. Scornet Tree ensemble methods 31 / 46

Boosting in a scheme

E. Scornet Tree ensemble methods 31 / 46

Boosting in a scheme

E. Scornet Tree ensemble methods 31 / 46

Boosting in a scheme

E. Scornet Tree ensemble methods 31 / 46

Boosting in a scheme

E. Scornet Tree ensemble methods 31 / 46

Boosting in a scheme

E. Scornet Tree ensemble methods 31 / 46

Outline

1 Random forests
Bagging and split randomization
Random forest algorithm
Out-of-bag error
Variable importance

2 Tree Boosting
Motivation
General Boosting algorithm
Gradient Boosting Decision Trees

E. Scornet Tree ensemble methods 32 / 46

Generic Boosting pseudo-algorithm

Boosting algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)},

a set H of weak learners, a loss ℓ.
2 Set f = 0
3 For t = 1, . . . , T

1 Select

(ht , αt) ∈ argmin
h∈H,α∈R

n∑
i=1

ℓ(yi , f (xi) + αh(xi))

(2)
2 Update f = f + αtht

4 The final predictor is given by f =
∑T

t=1 αtht in
regression (or its sign in binary classification).

Idea. At each iteration, we try to find the weak predic-
tor that, when added to the current overall predictor,
decreases the most the risk on the training set.

E. Scornet Tree ensemble methods 33 / 46

Generic Boosting pseudo-algorithm

Boosting algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)},

a set H of weak learners, a loss ℓ.
2 Set f = 0
3 For t = 1, . . . , T

1 Select

(ht , αt) ∈ argmin
h∈H,α∈R

n∑
i=1

ℓ(yi , f (xi) + αh(xi))

(2)
2 Update f = f + αtht

4 The final predictor is given by f =
∑T

t=1 αtht in
regression (or its sign in binary classification).

Remarks. Finding minimizers in equation is difficult
in general:

Optimization on a large space - the class H can
be infinite or very large, for example the set of all
decision trees.
Joint optimization procedure in (h, α).

E. Scornet Tree ensemble methods 33 / 46

Generic Boosting pseudo-algorithm

Boosting algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)},

a set H of weak learners, a loss ℓ.
2 Set f = 0
3 For t = 1, . . . , T

1 Select

(ht , αt) ∈ argmin
h∈H,α∈R

n∑
i=1

ℓ(yi , f (xi) + αh(xi))

(2)
2 Update f = f + αtht

4 The final predictor is given by f =
∑T

t=1 αtht in
regression (or its sign in binary classification).

A special case to understand better the procedure: the
exponential loss (Adaboost).

E. Scornet Tree ensemble methods 33 / 46

AdaBoost algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)} with Yi ∈ {−1, 1}, a set H of weak

learners.
2 Set f = 0
3 For t = 1, . . . , T

1 Select

(ht , αt) ∈ argmin
h,α

n∑
i=1

exp(−yi (f (xi) + αh(xi))) (3)

2 Update f = f + αtht

4 The final predictor is given by f =
∑T

t=1 αtht in regression (or its sign in binary
classification).

E. Scornet Tree ensemble methods 34 / 46

AdaBoost algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)} with Yi ∈ {−1, 1}, a set H of weak

learners.
2 Set f = 0
3 For t = 1, . . . , T

1 Select

(ht , αt) ∈ argmin
h,α

n∑
i=1

exp(−yi (f (xi) + αh(xi))) (3)

2 Update f = f + αtht

4 The final predictor is given by f =
∑T

t=1 αtht in regression (or its sign in binary
classification).

Assumptions
Assume that, for all h ∈ H,

−h ∈ H (symmetry)
There exist 1 ≤ i ̸= j ≤ n such that h(Xi) = Yi and h(Xj) ̸= Yj (no perfect
classifier).

Under these assumptions, AdaBoost can be rewritten as follows.

E. Scornet Tree ensemble methods 34 / 46

Adaboost algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}, a set H of weak learners.
2 Set f = 0 and w1,i = 1/n for all i ∈ {1, . . . , n}.
3 For t = 1, . . . , T

1 Select

ht ∈ argmin
h∈H

n∑
i=1

wt,i1Yi ̸=h(Xi) (3)

2 Compute

αt =
1
2

log
(

εt(ht)
1 − εt(ht)

)
, with εt(ht) =

n∑
i=1

wt,i1Yi ̸=ht (Xi). (4)

3 Set wt+1,i = wt,i exp(−yi αtht(xi))/Zt+1, where Zt+1 is such that
∑n

i=1 wt+1,i = 1.
4 Update f = f + αtht

4 The final predictor is given by f = sign
(∑T

t=1 αtht

)
.

E. Scornet Tree ensemble methods 34 / 46

Adaboost algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}, a set H of weak learners.
2 Set f = 0 and w1,i = 1/n for all i ∈ {1, . . . , n}.
3 For t = 1, . . . , T

1 Select

ht ∈ argmin
h∈H

n∑
i=1

wt,i1Yi ̸=h(Xi) (3)

2 Compute

αt =
1
2

log
(

εt(ht)
1 − εt(ht)

)
, with εt(ht) =

n∑
i=1

wt,i1Yi ̸=ht (Xi). (4)

3 Set wt+1,i = wt,i exp(−yi αtht(xi))/Zt+1, where Zt+1 is such that
∑n

i=1 wt+1,i = 1.
4 Update f = f + αtht

4 The final predictor is given by f = sign
(∑T

t=1 αtht

)
.

Each observation receives an initial weight w1,i = 1/n
The weak classifier that minimizes the 0 − 1 loss on the weighted sample is selected
Its coefficient α is computed based on its error
The aggregated classifier is computed and weights are updated.

E. Scornet Tree ensemble methods 34 / 46

Adaboost algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}, a set H of weak learners.
2 Set f = 0 and w1,i = 1/n for all i ∈ {1, . . . , n}.
3 For t = 1, . . . , T

1 Select

ht ∈ argmin
h∈H

n∑
i=1

wt,i1Yi ̸=h(Xi) (3)

2 Compute

αt =
1
2

log
(

εt(ht)
1 − εt(ht)

)
, with εt(ht) =

n∑
i=1

wt,i1Yi ̸=ht (Xi). (4)

3 Set wt+1,i = wt,i exp(−yi αtht(xi))/Zt+1, where Zt+1 is such that
∑n

i=1 wt+1,i = 1.
4 Update f = f + αtht

4 The final predictor is given by f = sign
(∑T

t=1 αtht

)
.

In practice, finding the best weak predictor (equation (3)) might be difficult. We thus
simply fit an algorithm on the weighted training sample instead.

E. Scornet Tree ensemble methods 34 / 46

Adaboost algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}, a weak learning procedure (e.g.,

decision trees of depth one trained with CART).
2 Set f = 0 and w1,i = 1/n for all i ∈ {1, . . . , n}.
3 For t = 1, . . . , T

1 Fit a weak learning algorithm (e.g., CART trees of depth 1, stumps) to the training set
with weights wt,i . Denote by ht the predictor.

2 Compute

αt =
1
2

log
(

εt(ht)
1 − εt(ht)

)
, with εt(ht) =

n∑
i=1

wt,i1Yi ̸=ht (Xi). (3)

3 Set wt+1,i = wt,i exp(−yi αtht(xi))/Zt+1, where Zt+1 is such that
∑n

i=1 wt+1,i = 1.
4 Update f = f + αtht

4 The final predictor is given by f = sign
(∑T

t=1 αtht

)
.

E. Scornet Tree ensemble methods 34 / 46

AdaBoost / Gradient Boosting

Adaboost among state-of-the-art meth-
ods for binary classification (2003 Gödel
Prize, see Freund and Schapire, 1995)

Can be adapted to multiclass
(Hastie et al., 2009) and regres-
sion (Drucker, 1997) via the func-
tion AdaBoostClassifier and
AdaBoostRegressor in scikit-learn.

Beware: it was claimed that AdaBoost
does not overfit but this is not true! Hy-
perparameters need to be chosen care-
fully to prevent overfitting.

E. Scornet Tree ensemble methods 35 / 46

AdaBoost / Gradient Boosting

Pros:

Powerful classifier

Deterministic strategy: two runs of Ad-
aboost leads to the same classifier.

Cons:

Sensible to noise / outliers in the data
→ High importance is given to incor-
rectly classified observations due to the
exponential loss

E. Scornet Tree ensemble methods 35 / 46

Going back to the general case

Boosting algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}, a set H of weak learners, a loss ℓ.
2 Set f0 = 0
3 For t = 1, . . . , T

1 Select

(ht , αt) ∈ argmin
h∈H,α∈R

n∑
i=1

ℓ(yi , ft−1(xi) + αh(xi)) (4)

2 Update ft = ft−1 + αtht

4 The final predictor is fT = f0 +
∑T

t=1 αtht in regression (or its sign in binary
classification).

Remarks. At each step, we try to find the base/weak predictor ht that reduces the most
the training set error of the aggregated predictor.

E. Scornet Tree ensemble methods 36 / 46

Going back to the general case

Boosting algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}, a set H of weak learners, a loss ℓ.
2 Set f0 = 0
3 For t = 1, . . . , T

1 Select

(ht , αt) ∈ argmin
h∈H,α∈R

n∑
i=1

ℓ(yi , ft−1(xi) + αh(xi)) (4)

2 Update ft = ft−1 + αtht

4 The final predictor is fT = f0 +
∑T

t=1 αtht in regression (or its sign in binary
classification).

Problem. Finding minimizers in equation (4) is difficult in general:
Optimization on a large space - the class H can be infinite or very large, for example
the set of all decision trees.
Joint optimization procedure in (h, α).

E. Scornet Tree ensemble methods 36 / 46

Going back to the general case

Boosting algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}, a set H of weak learners, a loss ℓ.
2 Set f0 = 0
3 For t = 1, . . . , T

1 Select

(ht , αt) ∈ argmin
h∈H,α∈R

n∑
i=1

ℓ(yi , ft−1(xi) + αh(xi)) (4)

2 Update ft = ft−1 + αtht

4 The final predictor is fT = f0 +
∑T

t=1 αtht in regression (or its sign in binary
classification).

Solution. Consider a first-order approximation

ℓ(yi , ft−1(xi) + αh(xi)) ≃ ℓ(yi , ft−1(xi)) + αh(xi)
[

∂ℓ(yi , z)
∂z

]
z=ft−1(xi)

. (5)

that is, solving

ht ∈ argmin
h∈H

n∑
i=1

h(xi)
[

∂ℓ(yi , z)
∂z

]
z=ft−1(xi)

. (6)

E. Scornet Tree ensemble methods 36 / 46

Going back to the general case

Boosting algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}, a set H of weak learners, a loss ℓ.
2 Set f0 = 0
3 For t = 1, . . . , T

1 Select

ht ∈ argmin
h∈H

n∑
i=1

h(xi)
[

∂ℓ(yi , z)
∂z

]
z=ft−1(xi)

. (4)

2 Select

αt ∈ argmin
α∈R

n∑
i=1

ℓ(yi , ft−1(xi) + αht(xi)). (5)

3 Update ft = ft−1 + αtht

4 The final predictor is fT = f0 +
∑T

t=1 αtht in regression (or its sign in binary
classification).

E. Scornet Tree ensemble methods 36 / 46

Going back to the general case

Boosting algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}, a set H of weak learners, a loss ℓ.
2 Set f0 = 0
3 For t = 1, . . . , T

1 Select ht in H such that, for all i ∈ {1, . . . , n},

ht(xi) ≃ −
[

∂ℓ(yi , z)
∂z

]
z=ft−1(xi)

. (4)

2 Select

αt ∈ argmin
α∈R

n∑
i=1

ℓ(yi , ft−1(xi) + αht(xi)). (5)

3 Update ft = ft−1 + αtht

4 The final predictor is fT = f0 +
∑T

t=1 αtht in regression (or its sign in binary
classification).

E. Scornet Tree ensemble methods 36 / 46

Going back to the general case

Gradient Boosting algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}, a set H of weak learners, a loss ℓ.
2 Set f0 = 0
3 For t = 1, . . . , T

1 For all i ∈ {1, . . . , n}, compute the gradient

ri = −
[

∂ℓ(yi , z)
∂z

]
z=ft−1(xi)

. (4)

2 Denote by ht the predictor, obtained by fitting the weak learning procedure to the
residual dataset (x1, r1), . . . , (xn, rn).

3 Select

αt ∈ argmin
α∈R

n∑
i=1

ℓ(yi , ft−1(xi) + αht(xi)). (5)

4 Update ft = ft−1 + αtht

4 The final predictor is fT = f0 +
∑T

t=1 αtht in regression (or its sign in binary
classification).

E. Scornet Tree ensemble methods 36 / 46

Going back to the general case

Gradient Boosting algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}, a set H of weak learners, a loss ℓ.
2 Set f ∈ argminc∈R

∑n
i=1 ℓ(yi , c)

3 For t = 1, . . . , T
1 For all i ∈ {1, . . . , n}, compute the gradient

ri = −
[

∂ℓ(yi , z)
∂z

]
z=ft−1(xi)

. (4)

2 Denote by ht the predictor, obtained by fitting the weak learning procedure to the
residual dataset (x1, r1), . . . , (xn, rn).

3 Via Backtracking line search, find an approximated solution

αt ∈ argmin
α∈R

n∑
i=1

ℓ(yi , ft−1(xi) + αht(xi)). (5)

4 Update ft = ft−1 + αtht

4 The final predictor is fT = f0 +
∑T

t=1 αtht in regression (or its sign in binary
classification).

E. Scornet Tree ensemble methods 36 / 46

Going back to the general case

Gradient Boosting algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}, a set H of weak learners, a loss ℓ.
2 Set f ∈ argminc∈R

∑n
i=1 ℓ(yi , c)

3 For t = 1, . . . , T
1 For all i ∈ {1, . . . , n}, compute the gradient

ri = −
[

∂ℓ(yi , z)
∂z

]
z=ft−1(xi)

. (4)

2 Denote by ht the predictor, obtained by fitting the weak learning procedure to the
residual dataset (x1, r1), . . . , (xn, rn).

3 Via Backtracking line search, find an approximated solution

αt ∈ argmin
α∈R

n∑
i=1

ℓ(yi , ft−1(xi) + αht(xi)). (5)

4 Update ft = ft−1 + ναtht

4 The final predictor is fT = f0 + ν
∑T

t=1 αtht in regression (or its sign in binary
classification).

Gradient boosting. Improving the performance of a base/weak learning algorithm (e.g.
decision trees) by successively fitting it to a modified training set. Here, outputs of the
training set are replaced by the negative gradient of the loss at each iteration.

E. Scornet Tree ensemble methods 36 / 46

A simple example: Gradient boosting with quadratic loss

Now, consider the Gradient Boosting algorithm with the square loss: ℓ(y , z) = (y − z)2.

Gradient Boosting algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}, a weak learning procedure.
2 Set f ∈ argminc∈R

∑n
i=1 ℓ(yi , c)

3 For t = 1, . . . , T
1 For all i ∈ {1, . . . , n}, compute the gradient

ri = −
[

∂ℓ(yi , z)
∂z

]
z=ft−1(xi)

. (6)

2 Denote by ht the predictor, obtained by fitting the weak learning procedure to the
residual dataset (x1, r1), . . . , (xn, rn).

3 Via Backtracking line search, find an approximated solution

αt ∈ argmin
α∈R

n∑
i=1

ℓ(yi , ft−1(xi) + αht(xi)). (7)

4 Update ft = ft−1 + ναtht

4 fT = f0 + ν
∑T

t=1 αtht in regression (or its sign in binary classification).

E. Scornet Tree ensemble methods 37 / 46

A simple example: Gradient boosting with quadratic loss

Now, consider the Gradient Boosting algorithm with the square loss: ℓ(y , z) = (y − z)2.
The pseudo residuals are given by

ri = −
[

∂ℓ(yi , z)
∂z

]
z=ft−1(xi)

. (6)

Gradient Boosting algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}, a weak learning procedure.
2 Set f ∈ argminc∈R

∑n
i=1 ℓ(yi , c)

3 For t = 1, . . . , T
1 For all i ∈ {1, . . . , n}, compute the gradient

ri = −
[

∂ℓ(yi , z)
∂z

]
z=ft−1(xi)

. (7)

2 Denote by ht the predictor, obtained by fitting the weak learning procedure to the
residual dataset (x1, r1), . . . , (xn, rn).

3 Via Backtracking line search, find an approximated solution

αt ∈ argmin
α∈R

n∑
i=1

ℓ(yi , ft−1(xi) + αht(xi)). (8)

4 Update ft = ft−1 + ναtht

4 fT = f0 + ν
∑T

t=1 αtht in regression (or its sign in binary classification).

E. Scornet Tree ensemble methods 37 / 46

A simple example: Gradient boosting with quadratic loss

Now, consider the Gradient Boosting algorithm with the square loss: ℓ(y , z) = (y − z)2.
The pseudo residuals are given by

ri = 2(yi − ft−1(xi)). (6)

Gradient Boosting algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}, a weak learning procedure.
2 Set f ∈ argminc∈R

∑n
i=1 ℓ(yi , c)

3 For t = 1, . . . , T
1 For all i ∈ {1, . . . , n}, compute the gradient

ri = −
[

∂ℓ(yi , z)
∂z

]
z=ft−1(xi)

. (7)

2 Denote by ht the predictor, obtained by fitting the weak learning procedure to the
residual dataset (x1, r1), . . . , (xn, rn).

3 Via Backtracking line search, find an approximated solution

αt ∈ argmin
α∈R

n∑
i=1

ℓ(yi , ft−1(xi) + αht(xi)). (8)

4 Update ft = ft−1 + ναtht

4 fT = f0 + ν
∑T

t=1 αtht in regression (or its sign in binary classification).

E. Scornet Tree ensemble methods 37 / 46

A simple example: Gradient boosting with quadratic loss

Now, consider the Gradient Boosting algorithm with the square loss: ℓ(y , z) = (y − z)2.
The pseudo residuals are given by

ri = 2(yi − ft−1(xi)). (6)

Gradient Boosting algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}, a weak learning procedure.
2 Set f ∈ argminc∈R

∑n
i=1 ℓ(yi , c)

3 For t = 1, . . . , T
1 For all i ∈ {1, . . . , n}, compute the gradient

ri = 2(yi − ft−1(xi)). (7)
2 Denote by ht the predictor, obtained by fitting the weak learning procedure to the

residual dataset (x1, r1), . . . , (xn, rn).
3 Via Backtracking line search, find an approximated solution

αt ∈ argmin
α∈R

n∑
i=1

ℓ(yi , ft−1(xi) + αht(xi)). (8)

4 Update ft = ft−1 + ναtht

4 fT = f0 + ν
∑T

t=1 αtht in regression (or its sign in binary classification).

E. Scornet Tree ensemble methods 37 / 46

A simple example: Gradient boosting with quadratic loss

Now, consider the Gradient Boosting algorithm with the square loss: ℓ(y , z) = (y − z)2.

Gradient Boosting algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}, a weak learning procedure.
2 Set f ∈ argminc∈R

∑n
i=1 ℓ(yi , c)

3 For t = 1, . . . , T
1 For all i ∈ {1, . . . , n}, compute the gradient

ri = 2(yi − ft−1(xi)). (6)
2 Denote by ht the predictor, obtained by fitting the weak learning procedure to the

residual dataset (x1, r1), . . . , (xn, rn).
3 Via Backtracking line search, find an approximated solution

αt ∈ argmin
α∈R

n∑
i=1

ℓ(yi , ft−1(xi) + αht(xi)). (7)

4 Update ft = ft−1 + ναtht

4 fT = f0 + ν
∑T

t=1 αtht in regression (or its sign in binary classification).

Gradient Boosting with quadratic loss amounts to iteratively fitting a weak learner to the
residuals of the current predictor.

E. Scornet Tree ensemble methods 37 / 46

Outline

1 Random forests
Bagging and split randomization
Random forest algorithm
Out-of-bag error
Variable importance

2 Tree Boosting
Motivation
General Boosting algorithm
Gradient Boosting Decision Trees

E. Scornet Tree ensemble methods 38 / 46

Gradient Boosting Decision Tree (GBDT)

GBDT algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}, a weak learning procedure, a loss ℓ.
2 Set f ∈ argminc∈R

∑n
i=1 ℓ(yi , c)

3 For t = 1, . . . , T
1 For all i ∈ {1, . . . , n}, compute the gradient

ri = −
[

∂ℓ(yi , z)
∂z

]
z=ft−1(xi)

. (8)

2 Denote by ht the predictor, obtained by fitting a weak learning procedure to the
residual dataset (x1, r1), . . . , (xn, rn).

3 Via Backtracking line search, find an approximated solution

αt ∈ argmin
α∈R

n∑
i=1

ℓ(yi , ft−1(xi) + αht(xi)). (9)

4 Update ft = ft−1 + ναtht

4 The final predictor is fT in regression (or its sign in binary classification).

Also called “Multiple additive regression trees” (MARS, see Friedman and Meulman,
2003).

E. Scornet Tree ensemble methods 39 / 46

Gradient Boosting Decision Tree (GBDT)

GBDT algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}, a weak learning procedure (shallow

trees), a loss ℓ.
2 Set f ∈ argminc∈R

∑n
i=1 ℓ(yi , c)

3 For t = 1, . . . , T
1 For all i ∈ {1, . . . , n}, compute the gradient

ri = −
[

∂ℓ(yi , z)
∂z

]
z=ft−1(xi)

. (8)

2 Denote by ht the predictor, obtained by fitting a shallow tree to the residual dataset
(x1, r1), . . . , (xn, rn).

3 Via Backtracking line search, find an approximated solution

αt ∈ argmin
α∈R

n∑
i=1

ℓ(yi , ft−1(xi) + αht(xi)). (9)

4 Update ft = ft−1 + ναtht

4 The final predictor is fT in regression (or its sign in binary classification).

Also called “Multiple additive regression trees” (MARS, see Friedman and Meulman,
2003).

E. Scornet Tree ensemble methods 39 / 46

Gradient Boosting Decision Tree (GBDT)

GBDT algorithm
1 Inputs: a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}, a weak learning procedure (shallow

trees), a loss ℓ.
2 Set f ∈ argminc∈R

∑n
i=1 ℓ(yi , c)

3 For t = 1, . . . , T
1 For all i ∈ {1, . . . , n}, compute the gradient

ri = −
[

∂ℓ(yi , z)
∂z

]
z=ft−1(xi)

. (8)

2 Denote by ht the predictor, obtained by fitting a shallow tree to the residual dataset
(x1, r1), . . . , (xn, rn). Let us denote by R1, . . . , Rj the leaves of ht .

3 Via direct computations, select

αt ∈ argmin
α∈RJ

n∑
i=1

ℓ(yi , ft−1(xi) +
J∑

j=1

αj1xi ∈Rj). (9)

4 Update ft(x) = ft−1(x) + ν
∑J

j=1 αj,t1xi ∈Rj .
4 The final predictor is fT in regression (or its sign in binary classification).

Also called “Multiple additive regression trees” (MARS, see Friedman and Meulman,
2003).

E. Scornet Tree ensemble methods 39 / 46

Parameters in Gradient Boosting Decision Tree (GBDT)

Functions GradientBoostingClassifier
and GradientBoostingRegressor in
scikit-learn.

E. Scornet Tree ensemble methods 40 / 46

Parameters in Gradient Boosting Decision Tree (GBDT)

Optimization/Statistical complexity trade-
off.

Number of boosted trees T .
→ Controls both the statistical complex-
ity of the final predictor (how many trees
are aggregated) and the number of iter-
ations in the optimization procedure (as
adding a tree can be seen as a gradient
descent step).
The shrinkage parameter ν.
→ It helps to prevent overfitting in the
early iterations. It can be seen as the
learning rate of the boosting procedure.
The smaller ν, the more iterations are
needed to converge. Related to the op-
timization procedure

⇒ Heuristic: fix ν to a small value (typically
0.1) and T = 100 (or optimize T via early
stopping).

E. Scornet Tree ensemble methods 40 / 46

Parameters in Gradient Boosting Decision Tree (GBDT)

Tree structure.

Same parameters as in CART

No split randomization is performed, i.e.
max-features = d

Maximal depth is set to max-depth = 3

square-loss in regression /
log-loss in classification (as in
logistic/multinomial regression).

E. Scornet Tree ensemble methods 40 / 46

Gradient Boosting

Pros:
State-of-the-art algorithm for supervised
learning with tabular data
Can handle regression and classification
tasks for various loss functions
Can handle continous and discrete fea-
tures
Deterministic strategy: two runs leads to
the same predictor.

Cons:
Can be computationally expensive - may
require a large number of trees
May overfit if too many trees are used
(early stopping can be used to prevent
overfitting)
May be sensible to outliers / noise in the
data

E. Scornet Tree ensemble methods 41 / 46

XGBoost

Stands for eXtreme Gradient Boosting (Chen and
Guestrin, 2016)

State-of-the-art methods on tabular data sets (of-
ten better than random forests)

E. Scornet Tree ensemble methods 42 / 46

XGBoost

Differences with Gradient Boosting
Second-order approximation of the loss with a
penalty term (number of leaves + leaf values):
assuming that ft−1 has been built, the loss at step
t is

argmin
h

n∑
i=1

ℓ(yi , ft−1(xi) + h(xi))︸ ︷︷ ︸
Replaced by a 2nd-order approx.

+ Ω(h)

→ New objective function to build a boosted tree
Feature discretization based on second-order
statistics
Feature subsampling can be used as in random
forest (in each node) or prior to the tree con-
struction.
Computationally more efficient (handling sparse
data, parallel and distributed computing)

E. Scornet Tree ensemble methods 42 / 46

XGBoost

Benefits/drawbacks

Computationally efficient

Can be applied to large-scale data set due to the
new split finding scheme

High predictive acuracy on most tabular data sets.

E. Scornet Tree ensemble methods 42 / 46

Variable importance in Gradient Boosting

The same variable importances as that in
Random Forests can be computed:

Mean Decrease in Impurity (MDI) for
each tree, which is then averaged (with
equal weights even with shrinkage) over
trees
Mean Decrease in Accuracy which is
computed on the final boosted predic-
tor.

E. Scornet Tree ensemble methods 43 / 46

Variable importance in Gradient Boosting

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Block population

Average number of bedrooms

Average number of rooms

Median house age in block

House block latitude

House block longitude

Average house occupancy

Median income in block

Feature importances using MDI

Figure: MDI computed with Gradient
Boosting on the California housing data set.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Block population

Average number of bedrooms

Average number of rooms

Median house age in block

Average house occupancy

House block longitude

House block latitude

Median income in block

Feature importances using MDA

Figure: MDA computed with Gradient Boost-
ing on the California housing data set.

E. Scornet Tree ensemble methods 43 / 46

[BDS22] C. Bénard, S. Da Veiga, and E. Scornet. “MDA for random forests:
inconsistency, and a practical solution via the Sobol-MDA”. In: Biometrika
(2022).

[Bou+11] A.-L. Boulesteix et al. “Random forest Gini importance favours SNPs with
large minor allele frequency: impact, sources and recommendations”. In:
Briefings in Bioinformatics 13 (2011), pp. 292–304.

[Bre01] L. Breiman. “Random forests”. In: Machine Learning 45 (2001), pp. 5–32.
[Bre02] L. Breiman. “Manual on setting up, using, and understanding random forests

v3. 1”. In: Statistics Department University of California Berkeley, CA, USA
1 (2002), p. 58.

[CG16] Tianqi Chen and Carlos Guestrin. “Xgboost: A scalable tree boosting
system”. In: Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining. 2016, pp. 785–794.

[Dru97] Harris Drucker. “Improving regressors using boosting techniques”. In: Icml.
Vol. 97. Citeseer. 1997, pp. 107–115.

[FM03] Jerome H Friedman and Jacqueline J Meulman. “Multiple additive regression
trees with application in epidemiology”. In: Statistics in medicine 22.9
(2003), pp. 1365–1381.

E. Scornet Tree ensemble methods 44 / 46

[FS95] Yoav Freund and Robert E Schapire. “A desicion-theoretic generalization of
on-line learning and an application to boosting”. In: Computational Learning
Theory: Second European Conference, EuroCOLT’95 Barcelona, Spain,
March 13–15, 1995 Proceedings 2. Springer. 1995, pp. 23–37.

[Has+09] Trevor Hastie et al. “Multi-class adaboost”. In: Statistics and its Interface 2.3
(2009), pp. 349–360.

[Li+19] X. Li et al. “A debiased mdi feature importance measure for random forests”.
In: Advances in Neural Information Processing Systems. 2019,
pp. 8049–8059.

[Loe22] Markus Loecher. “Unbiased variable importance for random forests”. In:
Communications in Statistics-Theory and Methods 51.5 (2022),
pp. 1413–1425.

[Nic11] K. K. Nicodemus. “Letter to the editor: On the stability and ranking of
predictors from random forest variable importance measures”. In: Briefings in
bioinformatics 12.4 (2011), pp. 369–373.

[NM09] K. K. Nicodemus and J. D. Malley. “Predictor correlation impacts machine
learning algorithms: implications for genomic studies”. In: Bioinformatics
25.15 (2009), pp. 1884–1890.

E. Scornet Tree ensemble methods 45 / 46

[Str+07] C. Strobl et al. “Bias in random forest variable importance measures:
Illustrations, sources and a solution”. In: BMC bioinformatics 8.1 (2007),
p. 25.

[Wil+21] Brian D Williamson et al. “A general framework for inference on
algorithm-agnostic variable importance”. In: Journal of the American
Statistical Association (2021), pp. 1–14.

[ZH21] Zhengze Zhou and Giles Hooker. “Unbiased measurement of feature
importance in tree-based methods”. In: ACM Transactions on Knowledge
Discovery from Data (TKDD) 15.2 (2021), pp. 1–21.

E. Scornet Tree ensemble methods 46 / 46

	1. Introduction
	2. Régression vs classification supervisée
	Validation croisée et bootstrap
	3. Arbres de décision uniques
	Detailed construction
	Splitting criterion
	Stopping rule and predictions
	Categorical features

	Pruning
	Final algorithm
	References
	Random forests
	Bagging and split randomization
	Random forest algorithm
	Out-of-bag error
	Variable importance

	Tree Boosting
	Motivation
	General Boosting algorithm
	Gradient Boosting Decision Trees

	References

