
Neural Network reborn

Renewed interest in 2006: [“A fast learning algorithm for deep belief nets”, Hinton et al. 2006]

Propose a way to train deep neural nets:
Train the first layer.
Add a layer on top of it and train only this layer.
Repeat the process until the network is deep enough.
Use this network as a warm start to train the whole network.

Technical reasons for this new growing interest:
Larger datasets
More powerful computers
Small number of algorithmic changes

1 MSE replaced by cross-entropy
2 ReLU (Fukushima, 1975, 1980)



Using classical networks for images?

No, for two reasons:
Do not take into account the spatial organization of pixels (if the pixels are
permuted, the output of the network would be the same, whereas the image would
change drastically)
Non robust to image shifting

Idea:
Apply local transformation to a set of nearby pixels (spatial nature of image is used)
Repeat this transformation over the whole image (resulting in a shift-invariant
output)

Not a new idea: trace back to perceptron and studies about the visual cortex of a cat.
The cat is able to

detect oriented edges, end-points, corners (low-level features)
combine them to detect more complex geometrical forms (high-level features)
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Convolutional neural networks (CNNs)

Neural networks that use convolution instead of matrix product in one of the layers

A CNN layer typically includes 3 operations: convolution, activation and pooling

Using the more general idea of parameters sharing, instead of full connection
(convolution instead of matrix product)

Convolution operator in neural networks is as follows

O(i , j) = (I � K)(i , j) =
�

k

�

l

I(i + k, j + l)K(k, l)

I is the input and K is called the kernels
The kernel K will be learned (replaces the weights W in a fully connected layer)



Convolution - Black and White images

Size of the input image is 8 × 8 × 1 (height, width, depth)
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Convolution - RGB

Size of the input image is 8 × 8 × 3 (height, width, depth)
Size of the kernel is 3 × 3 × 3

Warning: every filter is small spatially (along width and height), but extends through the
full depth of the input volume.
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Parameters of convolutional layer 1/4

Four hyperparameters control the size of the output volume: the kernel size, the depth of
the output volume, the stride and the zero-padding.

The size of the kernel (typically 3 × 3, 5 × 5).



Parameters of convolutional layer 2/4

Four hyperparameters control the size of the output volume: the kernel size, the depth of
the output volume, the stride and the zero-padding.

The size of the kernel,
The depth of the output volume, i.e., the number of filters/activation maps/feature
maps.



Parameters of convolutional layer 3/4

Four hyperparameters control the size of the output volume: the kernel size, the depth of
the output volume, the stride and the zero-padding.

The size of the kernel,
The depth of the output volume,
The stride, i.e., of how many pixels do we move the filter horizontally and vertically.
Usually, stride is equal to one (rarely to two, and even more rarely larger).



Parameters of convolutional layer 4/4

Four hyperparameters control the size of the output volume: the kernel size, the depth of
the output volume, the stride and the zero-padding.

The size of the kernel,
The depth of the output volume,
The stride,
The size of the zero-padding, i.e. the number of zeros we add to the borders of the
image. This can be used to obtain a constant image size between the input and the
output.



How to choose zero-padding?

Let

I the height/width of the input

O the height/width of the output

P the size of the zero-padding

K the height/width of the filter

S the stride

What is the relation between these quantities? How do we choose the zero-padding to
obtain an output of the same size as the input?
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O =
�2P + I − K

S

�
+ 1



Why convolution?

Same transformation applied to all parts of the image (takes into account the spatial
dependence between pixels and object-shift invariance)

Input image contains millions of pixel values, but we want to detect small
meaningful features such as edges with kernels that use only few hundred of pixels

When using a matrix product, all input and output units are connected, whereas
convolution connects only output neurons with several pixels of the input image.

Convolution involves weight sharing (a form of regularization) and requires less
parameters which improves memory, is more statistically efficient and
computationally faster.



Sparse connections

Left: when using matrix multiplication, all outputs are connected to all inputs. We
say that connectivity is dense

Right: in a convolution with a kernel of width 3, only three outputs are affected by
the input x . We say that the connectivity is sparse
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Pooling

The Pooling Layer operates independently on every depth slice of the input and resizes it
spatially, using the max function.

Parameters:
Stride S = 2
Spatial extend F = 2

Usually, S = F = 2 and more rarely F = 3, S = 2 (overlapping pooling).
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Pooling

Pooling layers compute each pixel of the output as a summary statistic of
neighboring input pixels at the corresponding location.

The most widely used is the max aggregation, called max-pooling

Pooling helps the representation to become approximately invariant to small
translations of the input

If a small translation is applied, output of the layer is almost unchanged

Very useful if we care more about the presence of some feature than its position in
the image: for face detection (presence of eyes is more important than where they
are)

Pooling also allows to handle inputs with different sizes: pictures can have different
sizes, but the output classification layer must be of fixed size



A possible architecture of a CNN

Consider a grayscale image. Each kernel of the first layer produces one feature map.
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kernel is a volume whose depth equals the depth of the input volume.
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neural networks.



A possible architecture of a CNN

The full architecture is summarized below.
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Data processing

Normalizing data
For each channel R, G, B, compute the pixels mean over all images in the whole data set.
Subtract this value to each channel of each image. → you do not lose relative
information between images.

Data augmentation
1 Sampling [“Imagenet large scale visual recognition challenge”, Russakovsky et al. 2015]

2 Translation/shifting [“Deep convolutional neural networks and data augmentation for environmental sound
classification”, Salamon and Bello 2017]

3 Horizontal reflection/mirroring [“Mirror, mirror on the wall, tell me, is the error small?”, H. Yang and Patras
2015]

4 Rotating [“Holistically-nested edge detection”, Xie and Tu 2015]

5 Various photometric transformations [“Predicting depth, surface normals and semantic labels with a
common multi-scale convolutional architecture”, Eigen and Fergus 2015]

Prediction
At test time, patches are extracted from the new images together with some of its
reflection/translation/... A prediction is made for each of these artificial images and they
are aggregated to make the final prediction.



Adding noise - Data augmentation and regularization

Add noise to input
[“Training with noise is equivalent to Tikhonov regularization”, Bishop 1995]

[“Adding noise to the input of a model trained with a regularized objective”, Rifai et al. 2011]

[“Explaining and harnessing adversarial examples”, Goodfellow et al. 2014]

Add noise to weights
[“An analysis of noise in recurrent neural networks: convergence and generalization”, Jim et al. 1996]

[“Practical variational inference for neural networks”, Graves 2011]

Add noise to output
[“Randomizing outputs to increase prediction accuracy”, Breiman 2000]

Select the best data transformations (computationally expensive, many re-training
steps).
[“Transformation pursuit for image classification”, Paulin et al. 2014]
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LeNet

[“Generalization and network design strategies”, LeCun et al. 1989]
[“Gradient-based learning applied to document recognition”, LeCun et al. 1998]



LeNet

First layer: convolutional layer C1
Kernel size = 5 × 5 + a bias
Stride = 1 (overlapping contiguous receptive fields)
Zero-padding = 0
Output: 6 different feature maps, each one resulting from the convolution with a
kernel 5 × 5 to which the activation function σ is applied.



Second layer: subsampling/pooling layer S2
Type of pooling: averaging.
Kernel size = 2 × 2
Stride = 2 (non-overlapping receptive fields)
Zero-padding = 0
Output: one feature map per input feature map resulting from the operation
σ((2 × 2 averaging)w + b).

Third-layer: convolutional layer C3
Warning: this layer operates on several feature maps whereas layer C1 operates on
the input image (depth = 1).
Here each feature map is connected to some specific input feature maps in order to

� Reduce the number of connections
� Break the symmetry between the different layers of the network.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 X X X X X X X X X X
1 X X X X X X X X X X
2 X X X X X X X X X X
3 X X X X X X X X X X
4 X X X X X X X X X X
5 X X X X X X X X X X



What about the remaining layers



What about the remaining layers

S4: Pooling layer as before
C5: Convolutional layer connected to all previous feature maps.
F6: fully-connected layer with 84 units
Output: a specific layer

Bi-pyramidal structure: the number of feature maps increases while the spatial resolution
decreases.



Output layer

Radial Basis function units
The jth neuron of the output layer computes

�z − wj�2
2 =

84�

i=1

(xi − wj,i )2,

where z is the vector of size 84 produced by layer F6 and wj = (wj,1, . . . , wj,84) is the
weight vector of the jth neuron.

Gaussian connections
Assuming that the vector in layer F6 are Gaussian, neuron j outputs the negative log
likelihood of a Gaussian distribution with mean wj and covariance matrix I.

In other words, each neuron outputs the square euclidean distance between its parameter
vector and the input.

Question.
How to choose wj ∈ {−1, 1}84?



Output layer and activation function

To choose w0 ∈ {−1, 1}84, use a stylized version of the image of 0 of size 7 × 12 = 84.
The pixel of this image are the parameters wj of the output neuron j = 0.

Why do not use a one-hot encodage?
LeCun et al. 1998 states that it does not work with more than few dozens of classes since
it requires output units to be off most of the time which is difficult to achieve with
sigmoid functions.

Activation function

σ(x) = A tanh(αx),
where A = 1.7159, α = 2/3.

→ Prevent saturation since neurons outputs belong to {−1, 1}
σ(1) = 1
σ(−1) = −1.



Criterion to optimize

Let [fθ(x)]j = �z − wj�2
2 be the output of the jth neuron of the output layer, where z is

the vector produced by layer F6.
Then the error for one observation (x , y) is defined as

E(θ) =
9�

j=0

[fθ(x)]j1y=j + log
�

e−C +
9�

j=0

e−[fθ(x)]j
�

,

where C > 0 is a constant.

The second term acts as a regularization since it forces the parameters of the neurons
j �= y to be far from the input vector of layer F6.
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Let [fθ(x)]j = �z − wj�2
2 be the output of the jth neuron of the output layer, where z is

the vector produced by layer F6.
Then the error for one observation (x , y) is defined as

E(θ) =
9�

j=0

[fθ(x)]j1y=j + log
�

e−C +
9�

j=0

e−[fθ(x)]j
�

,

where C > 0 is a constant.

The second term acts as a regularization since it forces the parameters of the neurons
j �= y to be far from the input vector of layer F6.

This is equivalent to

E(θ) = − log
� e−[fθ(x)]y

e−C +
�9

k=0 e−[fθ(x)]k

�
,

which is very close to the negative log likelihood of a softmax output layer.



Optimization procedure

Related to stochastic gradient descent:

θ
(k+1)
j = θ

(k)
j − η

µ + hjj

∂Ei
∂θj

,

where Ei is the loss of a single observation, η is the initial learning rate, µ a hand-picked
constant and hjj is the jth diagonal element of the Hessian matrix associated to Ei .

The expression of hjj is quite complicated since θj appears in different connections:

hjj =
�

(i,m)∈Vj

�

(k,l)∈Vj

∂2Ei
∂uim∂ukl

,

where uim is the connection between units i and m, and Vj is the set of pairs (i , m) such
that the connection between i and m involves the weight θj .

An approximation of each diagonal terms hjj is performed at the beginning of each epoch,
using the first 500 observations (whole data set being composed of 60000 observations).



Parameters

Weight initialization: uniform distribution U([−2.4/Fi , 2.4/Fi ]), where Fi is the number
of inputs (fan-in) of the unit which the connection belongs to.
→ Keep the weighted sum in the same range for each unit.

Gradient descent

θ
(k+1)
j = θ

(k)
j − η

µ + hjj

∂Ei
∂θj

,

with µ = 0.02.

Optimization lasts 20 epochs:
η = 0.0005 for the first two epochs,
η = 0.0002 for the next three epochs,
η = 0.0001 for the next three epochs,
η = 0.00005 for the next four epochs,
η = 0.00001 for the remaining epochs,



Results

The 82 patterns misclassified by LeNet5. Below each image is displayed the correct answer (left)
and the prediction (right). These errors are mostly caused by genuinely ambiguous patterns, or
by digits written in a style that are under represented in the training set.
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AlexNet

[“Imagenet classification with deep convolutional neural networks”, Krizhevsky et al. 2012]

Ingredients:
Activation function (ReLU)
Local Response Normalization (LRN)
Overlapping pooling (3 × 3 window with a stride S = 2 which reduces overfitting)
Dropout
Data augmentation



ReLU activation function

According to Krizhevsky et al. 2012, Convolutional neural networks with ReLU activation
functions can be trained several times faster than the same networks using tanh function.

Figure: A four-layer convolutional neural network with ReLU (solid line) reaches a 25% training
error rate on CIFAR-10 six times faster than an equivalent network with tanh (dashed line). The
learning rates for each network were chosen independently to make training as fast as possible.



Local Response Normalization/ Brightness normalization

Let ai
x,y the activity of a neuron resulting of kernel i applied to the position (x , y) followed

by a ReLU function and b i
x,y the corresponding renormalized activity which is given by

bi
x,y = ai

x,y

�
C + α

min(Q−1,i+q/2)�

j=max(0,i−q/2)

(aj
x,y )2

�−β

,

where the sum is taken over q adjacent feature maps at the same spatial position, and Q
is the total number of feature maps in this layer.
Constants (determined with validation set): C = 2, q = 5, α = 10−4, β = 0.75.

Note that the ordering of feature maps is arbitrary and determined before training. This
renormalization creates a competition between the different feature maps.

[“What is the best multi-stage architecture for object recognition?”, Jarrett et al. 2009]

They propose a similar normalization procedure where the mean activity is substracted
(local contrast normalization).



Overall architecture

Key-point: architecture is split across two GPU, which, most of the time, do not
communicate with each other.

Connectivity of each convolutional layer
ReLu are applied right after all convolutional layers and fully connected layers
Local Response Normalization is applied after ReLU in the first and second
convolutional layer
Max-pooling is applied after the first, second and fifth convolutional layers.



Optimization
Initialization:

Weights: N (0, 0.0001)
Biases of second, fourth and fifth convolutional layers and biases of fully connected
layers set to 1 (seems to accelerate the early stages of learning, prevent dying ReLU
phenomenon). Other biases are set to 0.

Stochastic gradient descent with momentum

v (k+1) = 0.9v (k) − 0.0005ηθ(k) − η

B
�

i∈B
∇�i (θ(k))

θ(k+1) = θ(k) + v (k+1),

with batch size |B| = B = 128.

The second term in the first equation corresponds to the L2 regularization of the losswith
a constant λ = 0.0005 (weight decay of 0.0005).

Learning rate is the same for all layers with the following heuristic:
Initialization: η = 0.01
Divide η by 10 when the validation error stop improving (done three times here).
90 epochs on 1.2 million images: 6 days.



Numerical results

Model Top-1 (val) Top-5 (val) Top-5 (test)
SIFT + FVs[7] − − 26.2%
1CNN 40.7% 18.2% −
5CNNs 38.1% 16.4% 16.4%
1CNN∗ 39.0% 16.6% −
7CNNs∗ 36.7% 15.4% 15.3%

First line is the second runner-up.
Second and third lines are results output by the averaging over 1 or 5 CNN
described before.
Last two lines correspond to networks with an extra convolutional layer after the last
pooling layer which has been trained on Image Net Fall 2011 then “fine-tuned” on
the ImageNet 2012 data base.

AlexNet has a very similar architecture to LeNet, but is deeper, bigger, and features
Convolutional Layers stacked on top of each other: previously, pooling layers followed
immediately each convolutional layer.



Results
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ZFNet: Improve upon AlexNet

[“Visualizing and understanding convolutional networks”, Zeiler and Fergus 2014]

Aim at finding out what the different feature maps are searching for in order to obtain a
better tuning of network architecture.

In ZFNet, feature maps are not divided across two different GPU. Thus connections
between layers are less sparse than for AlexNet.



Deconvnet

Find the pixels that maximize the
activation of a given feature map.

How? Invert the network.

Precisely:
Choose a layer
Choose a feature map
Run the network on a
validation set
Choose the image maximizing
the activation of this feature
map
"Backpropagate" this
activation to obtain a stylized
image in the pixel space



Results

Top 9 activations in a random subset of feature maps across the validation data,
projected down to pixel space using the previous deconvolutional network approach.
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Results

Remarks

strong grouping within each
feature map,

greater invariance at higher
layers

exaggeration of discriminative
parts of the image, e.g. eyes
and noses of dogs (layer 4, row
1, cols 1).



Visualization of previous modifications

(b): 1st layer features from
Krizhevsky et al. 2012.

(c): 1st layer features of ZFNet.



Visualization of previous modifications

(b): 1st layer features from
Krizhevsky et al. 2012.

(c): 1st layer features of ZFNet.

Differences: smaller stride (2 vs 4)
and filter size (7x7 vs 11x11)

Results in more distinctive features
and fewer dead features.



Visualization of previous modifications

(d): Visualizations of 2nd layer features from Krizhevsky et al. 2012; (e): Visualizations
of the 2nd layer features of ZFNet.



Visualization of previous modifications

(d): Visualizations of 2nd layer features from Krizhevsky et al. 2012; (e): Visualizations
of the 2nd layer features of ZFNet.

Feature maps in (e) are cleaner, with no aliasing artefacts that are visible in (d).



Conclusion regarding AlexNet

First layer filters are a mix of high and low frequency information, with little
coverage of middle frequencies.
→ Reduced the first layer filter size from 11 × 11 to 7 × 7.

Aliasing artifacts are present in second layer because of the large stride of 4 used in
the first convolutional layer.
→ change the stride from 4 to 2.

With these modifications:
Winner of the ILSVRC 2013
Improvement on AlexNet by

� expanding the size of the middle convolutional layers
� making the stride and filter size on the first layer smaller.



ZF Net final structure



Results in classification

Error % Val Top-1 Val Top-5 Test Top-5
(Gunji et al., 2012) − − 26.2
(Krizhevsky et al., 2012), 1 convnet 40.7 18.2 −−
(Krizhevsky et al., 2012), 5 convnets 38.1 16.4 16.4
(Krizhevsky et al., 2012)*, 1 convnets 39.0 16.6 −−
(Krizhevsky et al., 2012)*, 7 convnets 36.7 15.4 15.3
Our replication of
(Krizhevsky et al., 2012), 1 convnet 40.5 18.1 −−
1 convnet as per Fig. 3 38.4 16.5 −−
5 convnets as per Fig. 3 - (a) 36.7 15.3 15.3
1 convnet as per Fig. 3 but with
layers 3, 4, 5: 512,1024,512 maps - (b) 37.5 16.0 16.1
6 convnets, (a) & (b) combined 36.0 14.7 14.8



Occlusion

Three test examples where we systematically cover up different portions of the scene with a gray square (1st column) and see how the top (layer 5) feature
maps ((b) & (c)) and classifier output ((d) & (e)) changes.

(b): for each position of the gray scale, we record the total activation in one layer 5 feature map (the one with the strongest response in the unoccluded
image).
(c): a visualization of this feature map projected down into the input image (black square), along with visualizations of this map from other images. The
first row example shows the strongest feature to be the dog’s face. When this is covered-up the activity in the feature map decreases (blue area in (b)).
(d): a map of correct class probability, as a function of the position of the gray square. E.g. when the dog’s face is obscured, the probability for pomeranian
drops significantly.

(e): the most probable label as a function of occluder position.
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Tiny VGGnet

[“Very deep convolutional networks for large-scale image recognition”, Simonyan and Zisserman 2014b]



Network features

Convolutional layers:
Small receptive field: 3 × 3 (smallest ones capable of capturing the notion of
top/down, left/right!)
Stride of 1
Spatial resolution is preserved after convolution

Max-pooling layers:
2 × 2 kernel
Stride of 2

All hidden layers use ReLU activation functions.

Local Response Normalization layers do not improve performance.



Insightful remark...

If you stack 3 convolutional layers with receptive fields 3 × 3, you obtain a convolutional
layer with receptive fields 7 × 7. What is the interest?

1 Stack of 3 convolutional layers of size 3 × 3: complexity of 3 × ×3 × 3 = 27.

2 One standard convolutional layer of size 7 × 7: complexity of 49.

In the first case, we cannot obtain every possible layer: the resulting object is a decom-
position of three consecutive convolutional layers. There are less possibilities hence less
parameters.



VGGNet



Parameters

Initialization:
Network A: N (0, 0.01) for weights and 0 for biases.
For other networks: first four conv layers and last three fully connected layers were
initialized using network A and the remaining layers were initialized randomly.

Stochastic gradient descent with momentum

v (k+1) = 0.9v (k) − 0.0005ηθ(k) − η
1
B

�

i∈B
∇Li (θ(k))

θ(k+1) = θ(k) + v (k+1),

with batch size B = 128.

Learning rate is the same for all layers with the following heuristic:
Initialization: η = 0.01
Divide η by 10 when the validation error stop improving (done three times here).
74 epochs.

L2 penalty with constant 5.10−4

Dropout regularization for the first two fully connected layers (probability p = 0.5)



Results

Method top-1
val. error
(%)

top-5
val. error
(%)

top-5
test error
(%)

VGG (2 nets, multi-crop & dense eval.) 23.7 6.8 6.8
VGG (1 net, multi-crop & dense eval.) 24.4 7.1 7.0
VGG (ILSVRC submission, 7 nets, dense eval.) 24.7 7.5 7.3
GoogLeNet (Szegedy et al., 2014) (1 net) − 7.9
GoogLeNet (Szegedy et al., 2014)(7 nets) − 6.7
MSRA (He et al, 2014)(11 nets) − − 8.1
MSRA (He et al., 2014)(1 net) 27.9 9.1 9.1
Clarifai (Russakovsky et al., 2014) (multiple nets) − − 11.7
Clarifai (Russakovsky et al., 2014)(1 net) − − 12.5
Zeiler & Fergus (Zeiler & Fergus, 2013) (6 nets) 36.0 14.7 14.8
Zeiler & Fergus (Zeiler & Fergus, 2013)(1 net) 37.5 16.0 16.1
OverFeat (Sermanet et al, 2014) (7 nets) 34.0 13.2 13.6
OverFeat (Sermanet et al, 2014) (1 net) 35.7 14.2 −
Krizhevsky et al. (Krizhevsky et al., 2012)( 5 nets) 38.1 16.4 16.4
Krizhevsky et al. (Krizhevsky et al., 2012) (1 net) 40.7 18.2 −

A downside of the VGGNet is that it is more expensive to evaluate and uses a lot more
memory and parameters (140M).
Most of these parameters are in the first fully connected layer, and it was since found
that these FC layers can be removed with no performance downgrade, significantly
reducing the number of necessary parameters.
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GoogLeNet

[“Going deeper with convolutions”, Szegedy, W. Liu, et al. 2015]

Aim.
Increasing the depth and width of state-of-the-art convolutional neural networks while
keeping the number of parameters small:

Can approximate more complex functions

while being robust to overfitting and computationally appealing.

How.
Specifically, use of 1 × 1 convolution layers to reduce the number of parameters + apply
filters of different sizes 3 × 3, 5 × 5 or 3 × 3 max pooling (on each feature maps).

Details.
All convolution layers use ReLU activation functions.
Same spatial resolution for each feature map.



GoogLeNet - Inception module

Same spatial resolution for each feature map.
Use of 1 × 1 convolution layers to reduce the number of parameters then apply filters of
different sizes 3 × 3, 5 × 5 or 3 × 3 max pooling (on each feature maps).



GoogLeNet - Inception module

“3x3 reduce” and “5x5 reduce” stands for the number of 1x1 filters in the reduction layer used before the 3x3
and 5x5 convolutions. One can see the number of 1x1 filters in the projection layer after the built-in
max-pooling in the pool proj column.



Structure of GoogLeNet



Structure of GoogLeNet



Deep network - A concern

In order to backpropagate gradient, the authors add some auxiliary classifiers connected
to intermediate layers.
During training the loss of auxiliary classifiers is weighted by 0.3 and added to the total
loss of the network. Auxiliary networks are removed at inference time.

Auxiliary network put after (4a) and (4d):
Average pooling layer 5 × 5, stride of 3
A 1 × 1 convolution with 128 filters, with ReLU.
A fully connected layer with 1024 neurons and ReLU
A dropout layer with a dropout ratio of 70%.
A linear layer with softmax loss, predicting the same 1000 classes as the main
classifier.



Parameters

Initialization:
Weights are drawn from N (0, 1) and biases are set to 0.

[“Deep learning via Hessian-free optimization.”, Martens 2010]

Stochastic gradient descent with momentum

v (k+1) = µv (k) − η
1
B

�

i∈B
∇�i (θ(k) + µv (k))

θ(k+1) = θ(k) + v (k+1),

with batch size B = 200, where
µ(k) = min(1 − 2−1−log2(�k/250�+1), µmax ),

where µmax ∈ {0, 0.9, 0.99, 0.995, 0.999}.

Learning rate is the same for all layers with the following heuristic:
Initialization: η = 0.01
Multiply η by 0.96 every 8 epochs.
Training lasts 125 epochs.



Results
Polyak averaging is used to create the final model at inference time.
7 different versions of GoogleNet were trained and aggregated to make predictions.

Main contribution: development of an Inception Module that dramatically reduced the number of
parameters in the network (4M, compared to AlexNet with 60M).
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ResNet (2016)

[“Deep residual learning for image recognition”, He et al. 2016]

Statement: Optimization can be hard for some deep networks.

Solution: Ease optimization by adding simple paths in the network

→ No extra parameters, no additional computational complexity



Literature on shortcut connections

Early practice for training multi-layer perceptrons was to add a linear layer between the
inputs and the outputs
[Pattern recognition and neural networks, Ripley 2007]

Few intermediate classifiers can also be added in intermediary levels in order to ease the
optimization:

[“Going deeper with convolutions”, Szegedy, W. Liu, et al. 2015]

[“Deeply-supervised nets”, Lee et al. 2015]

Highway networks have shortcut connections with gating functions. Here, gates are data
dependent and have parameters.

[“Highway networks”, Rupesh Kumar Srivastava et al. 2015]

[“Training very deep networks”, Rupesh K Srivastava et al. 2015]



General Idea

Inspired from VGG nets:

For the same output feature map size, the layers have the same numbers of filters
If the feature map size is halved, then the number of filters is doubled to preserve
the time complexity per layer

y = f (x, Wi )+x,

where x and y are respectively the input and the output of a (stack of) layer(s), Wi are
the weights of this/these layer(s) and f (x, Wi ) the output of this/these layer(s).

If dimensions do not match between x and y, there are two solutions:
identity mapping is coupled with extra zero entries padded for increasing dimensions
Projection shortcut is used to match dimensions via 1 × 1 convolution filters

y = f (x, Wi ) + Wsx,

where Ws is a projection.

Besides, “when the shortcuts go across feature maps of two different sizes, they are
performed with a stride of 2”.



Structure of ResNet



Structure of ResNet



Parameters

Initialization, as in He et al. 2015: weights are drawn from N (0, 2/nL) (nL is the number
of neurons in the previous layer); biases are set to 0.

Stochastic gradient descent with momentum

v (k+1) = 0.9v (k) − 0.0001ηθ(k) − η
1
B

�

i∈B
∇Li (θ(k))

θ(k+1) = θ(k) + v (k+1),

with batch size B = 256.

Learning rate is the same for all layers with the following heuristic:
Initialization: η = 0.1
Divide η by 10 when the validation error stop improving (done three times here).
120 epochs.

Miscellaneous:
Batch normalization after each convolution and before activation
No dropout



Results

Winner of ILSVRC 2015
Special skip connections and heavy use of batch normalization
No fully connected layers at the end of the network.
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DenseNet

[“Densely Connected Convolutional Networks.”, G. Huang et al. 2017]

Figure: A deep DenseNet with three dense blocks. The layers between two adjacent blocks are
referred to as transition layers and change feature-map sizes via convolution and pooling



DenseNet

Figure: A 5-layer dense block with a growth rate of k = 4. Each layer takes all preceding
feature-maps as input.



Ingredients

Let x� be the input of the �th layer. Usually,
x� = f�(x�−1).

Dense Block. Inside a dense block,
x� = f�(x0, . . . , x�−1).

The functions f� are composed of three consecutive operations:
1 First, a batch normalization
2 Then, activation function ReLU
3 Finally, 3 × 3 convolutional layer (feature map sizes are kept fixed)

Transition layers.
1 Batch normalization
2 1 × 1 convolution
3 2 × 2 average pooling



Ingredients

Growth rate k
If each function f� produces k feature maps, the inputs of the �th layer has k0 + k(� − 1)
channels. Narrow layers (typically k = 12) give good results.
→ Indeed, each layer has access to each previous layer and thus to the “collective
knowledge” of the network.

Bottleneck layer - DenseNet-B
A way to improve computational efficiency is to introduce 1 × 1 convolutional layers:
inside dense block, for each layer

BN - ReLU - Conv (1 × 1) - BN - ReLU - Conv (3 × 3)

Conv 1 × 1 are set to produce 4k feature maps.

Compression layer - DenseNet-C
Throw away a fraction θ ∈ [0, 1] (typically θ = 0.5) of feature maps at transition layers.



Architecture



Parameters

Initialization, as in He et al. 2015: weights are drawn from N (0, 2/nL) (nL is the number
of neurons in the previous layer); biases are set to 0.

Stochastic gradient descent with momentum

v (k+1) = 0.9v (k) − 0.0001ηθ(k) − η
1
B

�

i∈B
∇Li (θ(k))

θ(k+1) = θ(k) + v (k+1),

with batch size B = 256.

Learning rate is the same for all layers with the following heuristic:
Initialization: η = 0.1
Divide η by 10 at epoch 30 and 60.
90 epochs.

Miscellaneous:
Batch normalization after each convolution and before activation
No dropout



DenseNet Results
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Inception V2-V3

Based on GoogLeNet Inception module
[“Rethinking the inception architecture for computer vision”, Szegedy, Vanhoucke, et al. 2016]

New ideas:
Using asymmetric convolutions 1 × n and n × 1 (for n = 3, 5, 7) can be useful in the
middle layers of the networks for feature maps of size m × m (for 12 ≤ m ≤ 20).
Label smoothing using a uniform distribution over labels



Xception

[“Xception: Deep learning with depthwise separable convolutions”, Chollet 2017]
Stands for “Extreme Inception” and builds upon Inception module in GoogLeNet.

The main ideas:
Perform 1 × 1 convolutions
Apply 3 × 3 (or other filter size) convolutions to each previous feature map (the one
created by 1 × 1 convolutions) separately.

→ Decoupled the depth (1 × 1 convolutions) and the spatial transformations
(convolutions on each feature map separately).



Comparison of several CNN

[“An analysis of deep neural network models for practical applications”, Canziani et al. 2016]



CNN Taxonomy

See this very detailed review paper [“A survey of the recent architectures of deep convolutional neural networks”,
Khan et al. 2020]
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Applications

This section is based on [“Recent advances in convolutional neural networks”, Gu et al. 2015].

More applications domain and more references are presented in this paper.
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Image classification - Hierarchy of classifiers

[“Error-driven incremental learning in deep convolutional neural network for large-scale image classification”, Xiao et al. 2014]

→ They propose a training method that grows a network not only incrementally but also
hierarchically. In their method, classes are grouped according to similarities and are self-
organized into different levels.

[“HD-CNN: hierarchical deep convolutional neural networks for large scale visual recognition”, Yan et al. 2015]

→ They introduce a hierarchical deep CNNs (HD-CNNs) by embedding deep CNNs into
a category hierarchy. They decompose the classification task into two steps. The coarse
category CNN classifier is first used to separate easy classes from each other, and then
those more challenging classes are routed downstream to fine category classifiers for further
prediction. This architecture follows the coarse-to-fine classification paradigm and can
achieve lower error at the cost of an affordable increase of complexity.



Image classification - CNN Tree

Z. Wang et al. 2018 build a tree of CNN to learn fine-grained features for subcategory
recognition.



Image classification - CNN Tree

Figure: Confusion set outputs by AlexNet softmax prediction on validation set of ILSVRC 2015.



Image classification - CNN Tree



Image classification - CNN Tree

Figure: Top label is given by basic AlexNet CNN while bottom one is given by CNNTree (green
color corresponds to a correct prediction)
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Pose estimation - Deeppose

[“Deeppose: Human pose estimation via deep neural networks”, Toshev and Szegedy 2014]

DeepPose is the first application of CNNs to human pose estimation problem. It captures
the full context of each body joint by taking the whole image as the input.

Previous works:
Limited expressiveness – the use of local detectors, which reason in many cases
about a single part
Modeling only a small subset of all interactions between body parts.



Pose estimation - Deeppose

Structure:
Normalizing images
Regression problem, i.e., prediction of k joints

Image �→ y ∈ R
2k .

Use a cascade of 7 layers, each one taking a zoom of the previous image as input
(refinement of the prediction at each stage).



Pose estimation - Deeppose



Pose estimation - Deeppose



Action recognition - images

Action recognition aims at classifying human activities based on their visual appearance
and motion dynamics.

In Simonyan and Zisserman 2014b (VGG),they use the outputs of the penultimate layer
of a pre-trained CNN to predict actions and achieve a high level of performance in action
classification.

Gkioxari et al. 2015 add a part detection to this framework. Their part detector is a CNN
based extension to the original Poselet Pishchulin et al. 2013 method.



Action recognition

[“Actions and attributes from wholes and parts”, Gkioxari et al. 2015]

Given an R-CNN person detection (red box), they detect parts using a novel, deep
version of poselets. The detected whole-person and part bounding boxes are input into a
fine-grained classification engine to produce predictions for actions and attributes.



Action recognition
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Object detection - Exhaustive search vs segmentation

Segmentation: aims for a unique partitioning of the image through a generic algorithm,
where there is one part for all object silhouettes in the image.

[“Selective search for object recognition”, Uijlings et al. 2013]

High variety of reasons that an
image region forms an object:



Object detection - Exhaustive search vs segmentation

Segmentation: aims for a unique partitioning of the image through a generic algorithm,
where there is one part for all object silhouettes in the image.

[“Selective search for object recognition”, Uijlings et al. 2013]

High variety of reasons that an
image region forms an object:
(b) the cats can be distinguished

by colour, not texture.
(c) the chameleon can be

distinguished from the
surrounding leaves by texture,
not colour.

(d) the wheels can be part of the
car because they are enclosed,
not because they are similar in
texture or colour.

(a) many different scales needed

→ Necessity to use a variety of diverse strategies.



Object detection - Exhaustive search vs segmentation

Alternative approach: do localisation through the identification of an object.

Exhaustive search: With an appearance model learned from examples, an exhaustive
search is performed where every location within the image is examined as to not miss any
potential object location.

Searching every possible location is computationally infeasible.

→ restrictions need to be imposed: the classifier is simplified and the appearance model
needs to be fast.

Selective search: data-driven selective search using bottom up grouping.



Object detection - Exhaustive search vs segmentation

Bottom-up grouping generates hierarchical nested partitioning of the input image.
[“Mean shift: A robust approach toward feature space analysis”; “Efficient graph-based image segmentation”, Comaniciu and
Meer 2002; Felzenszwalb and Huttenlocher 2004]



Object detection - Exhaustive search vs segmentation

Generic algorithm:
They first use Felzenszwalb and Huttenlocher 2004 to create initial regions. This
method is the fastest, publicly available algorithm that yields high quality starting
locations.
Then they use a greedy algorithm to iteratively group regions together

� First the similarities between all neighbouring regions are calculated.
� The two most similar regions are grouped together, and new similarities are calculated

between the resulting region and its neighbours.
� The process of grouping the most similar regions is repeated until the whole image

becomes a single region.
Variety of partitionings:

Different variant of input images
Similarities based on color, texture, size, shared pixels



Object detection - naive approach

Generally, the difficulties mainly lie in how to accurately and efficiently localize objects in
images or video frames.

In some early works by Vaillant et al. 1994; Nowlan and Platt 1995; Girshick, Iandola,
et al. 2015, they use the sliding window based approaches to densely evaluate the CNN
classifier on windows sampled at each location and scale. Since there are usually
hundreds of thousands of candidate windows in a image, these methods suffer from highly
computational cost, which makes them unsuitable to be applied on the large-scale dataset

More references on object proposal based methods:
[“Human detection from images and videos: A survey”, Nguyen et al. 2016]
[“Category-independent object proposals with diverse ranking”, Endres and Hoiem 2014]
[“Textproposals: a text-specific selective search algorithm for word spotting in the wild”, Gómez and Karatzas 2017]



Object detection - R-CNN - Regions with CNN features

One of the most famous object proposal based CNN detector is Region-based CNN
(R-CNN) by Girshick, Donahue, et al. 2014, aiming at

localizing objects with a deep network
training a high-capacity model with only a small quantity of annotated detection
data

1 Generating
category-independent region
proposals via selective search.

2 Training large CNN that
extracts a fixed-length feature
vector from each region
(Supervised pre-training on the
large auxiliary dataset
ILSVRC, followed by
domainspecific fine-tuning on
the small dataset PASCAL).

3 Learning a set of class- specific
linear SVMs.



Object detection - R-CNN - Regions with CNN features

However, computational cost is high since the time-consuming CNN feature extractor will
be performed for each region separately.



Object detection - R-CNN - Regions with CNN features



Object detection - R-CNN - Regions with CNN features



Object detection - improving R-CNN

[“Spatial pyramid pooling in deep convolutional networks for visual recognition”, He et al. 2014]
Spatial Pyramid Pooling network (SPP net) is a pyramid-based version of R-CNN, which
introduces an SPP layer to relax the constraint that input images must have a fixed size.
Unlike R-CNN, SPP net extracts the feature maps from the entire image only once, and
then applies spatial pyramid pooling on each candidate window to get a fixed-length
representation.



Object detection - improving R-CNN

Drawback: multi-stage pipeline ⇒ CNN feature extractor and SVM classifier are
impossible to train jointly.
[“Faster r-cnn: Towards real-time object detection with region proposal networks”, Ren et al. 2015]
Faster RCNN improves SPP net by using an end-to-end training method. All network
layers can be updated during fine-tuning, which simplifies the learning process and
improves detection accuracy.

[“Attentionnet: Aggregating weak directions for accurate object detection”, Yoo et al. 2015]
They treat the object detection problem as an iterative classification problem. It predicts
an accurate object boundary box by aggregating quantized weak directions from their
detection network.



Object detection - YOLO, SDD

More recently, YOLO Redmon et al. 2016 and SSD W. Liu et al. 2016 allow single
pipeline detection that directly predicts class labels.

YOLO (You Only Look Once) treats object detection as a regression problem to spatially
separated bounding boxes and associated class probabilities.

SDD (Single Shot Detector) discretizes the output space of bounding boxes into a set of
default boxes over different aspect ratios and scales per feature map location. With this
multiple scales setting and their matching strategy, SSD is significantly more accurate
than YOLO.

With the benefits from super-resolution, Lu et al. 2016 propose a top-down search
strategy to divide a window into sub-windows recursively, in which an additional network
is trained to account for such division decisions.



YOLO

[“You only look once: Unified, real-time object detection”, Redmon et al. 2016]

The whole detection pipeline is a single network which predicts bounding boxes and class
probabilities from the full image in one evaluation, and can be optimized end-to-end
directly on detection performance.

Drawback
Fails to detect small numerous
objects.



YOLO

YOLO still lags behind state-of-the-art detection systems in accuracy. While it can
quickly identify objects in images it struggles to precisely localize some objects, especially
small ones.



YOLO



SSD

[“Ssd: Single shot multibox detector”, W. Liu et al. 2016]

SSD is also a single shot detec-
tor (i.e. with no region propos-
als) contrary to R-CNN.
SSD uses convolutional layers
at the end of the network (con-
trary to YOLO that uses fully
connected layers)
In SSD, the end of the network
is composed of feature maps of
different sizes. Using these fea-
ture maps allows to capture ob-
jects of different sizes, contrary
to YOLO which uses one single
grid on the input image.



SSD



Image classification - Going further

Lin et al. 2015 incorporate part localization, alignment, and classification into one
recognition system which is called Deep LAC.



Image classification - Going further

Annotations are not easy to collect and these systems have difficulty in scaling up and to
handle many types of fine-grained classes.

[“Fine-grained recognition without part annotations”, Krause et al. 2015] combine co-segmentation and
alignment in a discriminative mixture to generate parts for facilitating fine-grained
classification.

[“Weakly supervised fine-grained categorization with part-based image representation”, Zhang et al. 2016] use the
unsupervised selective search to generate object proposals, and then select the useful
parts from the multi-scale generated part proposals.

Object detection and classification: see also [“Deep neural networks for object detection”, Szegedy, Toshev,
et al. 2013]
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Scene labeling

Scene labeling aims to relate one semantic class (road, water, sea...) to each pixel of the
input image

→ [“Recurrent convolutional neural networks for scene labeling”, Pinheiro and Collobert 2014]
To enable the CNNs to have a large field of view over pixels, they develop the recurrent
CNNs. More specifically, the identical CNNs are applied recurrently to the output maps
of CNNs in the previous iterations. By doing this, they can achieve slightly better
labelling results while significantly reducing the inference times.

→ [“Dag-recurrent neural networks for scene labeling”, Shuai et al. 2016]
They use the recurrent neural networks to model the contextual dependencies among
image features from CNNs, and dramatically boost the labelling performance.

Object semantic segmentation
[“Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs”, L.-C. Chen
et al. 2018]
They apply pre-trained deep CNNs to emit the labels of pixels. Considering that the
imperfectness of boundary alignment, they further use fully connected Conditional
Random Field (CRF) to boost the labelling performance.



Scene labeling - DAG-RNN
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Object tracking

The success in object tracking relies heavily on how robust the representation of target
appearance is against several challenges such as view point changes, illumination
changes, and occlusions

[“Deeptrack: Learning discriminative feature representations online for robust visual tracking”, Li et al. 2016]
They propose a target-specific CNN for object tracking, where the CNN is trained
incrementally during tracking with new examples obtained online. They employ a
candidate pool of multiple CNNs as a data-driven model of different instances of the
target object.

[“Cnntracker: Online discriminative object tracking via deep convolutional neural network”, Y. Chen et al. 2016]
A CNN object tracking method is proposed to address limitations of handcrafted features
and shallow classifier structures in object tracking problem.

[“Online tracking by learning discriminative saliency map with convolutional neural network”, Hong et al. 2015]
They propose a visual tracking algorithm based on a pre-trained CNN. They put an
additional layer of an online SVM to learn a target appearance discriminatively against
background.

https://pjreddie.com/darknet/yolo/



Pose/Action recognition - videos

Applying CNNs on videos is challenging because traditional CNNs are designed to
represent two-dimensional spatial signals but in videos a new temporal axis is added
which is essentially different from a spatial dimension.

[“3D convolutional neural networks for human action recognition”, Ji et al. 2013]
They consider the temporal axis in a similar manner as other spatial axes and introduce a
network of 3D convolutional layers to be applied on video inputs.

[“Two-stream convolutional networks for action recognition in videos”, Simonyan and Zisserman 2014a]
Separating the representation to spatial and temporal variations and train individual
CNNs for each of them. First stream of this framework is a traditional CNN applied on
all the frames and the second receives the dense optical flow of the input videos and
trains another CNN which is identical to the spatial stream in size and structure. The
output of the two streams are combined in a class score fusion step.

[“P-cnn: Pose-based cnn features for action recognition”, Chéron et al. 2015]
They use the two stream CNN on the localized parts of the human body and show the
aggregation of part-based local CNN descriptors can effectively improve the performance
of action recognition.



Pose estimation - P-CNN

[“P-cnn: Pose-based cnn features for action recognition”, Chéron et al. 2015]

[“End-to-end learning of deformable mixture of parts and deep convolutional neural networks for human pose estimation”,
W. Yang et al. 2016]
https://www.youtube.com/watch?v=MKVvQK8FawE

[“Segnet: A deep convolutional encoder-decoder architecture for image segmentation”, Badrinarayanan et al. 2015]
https://www.youtube.com/watch?v=CxanE_W46ts

[“Realtime multi-person 2d pose estimation using part affinity fields”, Cao et al. 2016]
https://www.youtube.com/watch?v=pW6nZXeWlGM
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Text detection and recognition

Optical Character Recognition (OCR) can be categorized into three types:
1 text detection and localization without recognition,
2 text recognition on cropped text images,
3 end-to-end text spotting that integrates both text detection and recognition.

Several proposed methods:
CNN model originally trained for character classification to perform text detection
[“End-to-end text recognition with convolutional neural networks”, T. Wang et al. 2012]

CNN model allowing feature sharing across four different subtask: text detection,
character case-sensitive and insensitive classification, and bigram classification.
[“Deep features for text spotting”, Jaderberg, Vedaldi, et al. 2014]

Elementary subtasks as text bounding box filtering, text bounding box regression,
and text recognition are each tackled by a separate CNN model.
[“Reading text in the wild with convolutional neural networks”, Jaderberg, Simonyan, et al. 2016]
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