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Condition number

— In the linear model, the estimate of /3 is obtained by solving the
normal equations
X'X3=X"y

— The difficulty of solving this system of linear equations can be
described by the condition number

d
R(XTX) = =%
min
the ratio between the largest and smallest singular values of
X'X
— If the condition number is very large, then the matrix is said to
be ill-conditioned (see Section 2.6 of CASL)



Toy linear model with n = p = 2. We set X and § as

1090 -1 1
X:[—1 10—5] ﬁ:[l]

And if we define y = X3, this gives
(107 -1 1] [ 109-1
Y=l 21 105 || 1|7 | —0.99999

The reciprocal of condition number, i.e. 1/x(X"X) = 9.998¢ — 29, is
smaller than (my) machine precision, i.e. 2.220446e — 16



X <- matrix(c(1079, -1, -1, 10°(-5)), 2, 2)
beta <- c(1,1)
y <= X %*) beta

solve( crossprod(X), crossprod(X, y) )
Error in solve.default(crossprod(X))
system is computationally singular:

reciprocal condition number = 9.998e-29

.Machine$double.eps
2.220446e-16



Ridge regression solution

- Ridge provides a remedy for an ill-conditioned X'X matrix

— If our n x p design matrix X has column rank less than p (or
nearly so in terms of its condition number), then the usual
least-squares regression equation is in trouble:

B=(XXx)""X'y

- What we do is add a ridge on the diagonal - X'X + A, with
A > 0 - which takes the problem away:

By = (XX + L)Xy

— This is the ridge regression solution proposed by Hoerl and
Kennard (1970)



- Ridge regression modifies the normal equations to
(X'X+AL)B=X"y
and the condition number of (X' X + AL) is

dmax + A

R(XTX+ ML) = Y

— Notice that even if dy,;; = 0, the condition number will be finite
ifA>0

— This technique is known as Tikhonov regularization, after the
Russian mathematician Andrey Tikhonov



Penalized (Lagrange) form

— The optimization problem that ridge is solving

mgnlly—XﬁIIQvLAHBHQ (1)

where || - | is the /2 Euclidean norm

- The ridge remedy comes with consequences. The ridge estimate
is biased toward zero. It also has smaller variance than the OLS
estimate.

- Selecting A\ amounts to a bias-variance trade-off



Constrained form

- We can also express the ridge problem as

min [y = X53|*  subject to |3 < ¢ 2)

— The two problems are of course equivalent: every solution By in
(1) is a solution to (2) with ¢ = || 8,]|






Bayesian view

— Assume
ilB, X = xi ~ xif + €

with ¢; iid. N(0,02). Here we think of 3 as random as well,
and having a prior distribution

B ~ N(07 J%IP)

— Then the negative log posterior distribution is proportional to

(1), with
2

O¢

o
and the posterior mean is the ridge estimator

— The smaller the prior variance parameter O'Z), the more the
posterior mean is shrunk toward zero, the prior mean for 3



Important details



When including an intercept term, we usually leave this
coefficient unpenalized, solving

min ||y — la — XB[* + AlIB]1?

Ridge regression is not invariant under scale transformations of
the variables, so it is standard practice to centre each column of
X (hence making them orthogonal to the intercept term) and
then scale them to have Euclidean norm +/n

It is straightforward to show that after this standardisation of X,
& = ¥, so we can also centre y and then remove « from our
objective function

Different R packages have different defaults, e.g. glmnet also
standardizes y



~ Let y = (y— 1y) and X = (X — 1x")diag(1/s) be the centered y
and standardized X, respectively, with

- y=Q1/n>2 v
- x=(1/n)X1,

- s=(s1,...,8) and 57 = (1/n) Y1, (x; — X;)°
— Compute the scaled coefficients

By = (XX + A\,) X'y
— Transform back to unscaled coefficients

By = diag(1/s)Br & =3— %P



Ridge computations and the SVD



Tuning parameter

- In many wide-data and other ridge applications, we need to
treat \ as a tuning parameter, and select a good value for the
problem at hand.

- For this task we have a number of approaches available for
selecting A from a series of candidate values:

- With a validation dataset separate from the training data, we
can evaluate the prediction performance at each value of A

- Cross-validation does this effciently using just the training data,
and leave-one-out (LOO) CV is especially efficient



SVD

- Whatever the approach, they all require computing a number of
solutions (3 at different values of A: the ridge regularization
path

- We can achieve great efficiency via the (full form) Singular
Value Decomposition (SVD)

X = UDV!

where U n x n orthogonal, V p x p orthogonal and D n x p
diagonal, with diagonal entries d; > ... > d,, > 0, where
m = min(n, p)



- From the SVD we get

By = (VD'U'UDV'+ AVV))"'VD'U'y (3)
= V(D'D+ AL)"'D'Uy

where v; () is the jth column of V(U), and (a, b) = a'b
— Once we have the SVD of X, we have the ridge solution for all
values of A

— When n > p the ridge solution with A = 0 is simply the OLS
solution for 3

— When p > n, there are infinitely many least squares solutions
for j3, all leading to a zero-residual solution. From (3) with
A = 0 we get a unique solution, the one with minimum
Euclidean norm



Fitted values
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Principal components regression

- Ridge
A d d
= Vdi - U
B)\ lag(d%+)\7 adg+)\) y
— Principal components regression with g components
- 1 1
— Vdi (77”"7’ )U
/Bq 1ag d]_ dq 0 0 y

— Both operate on the singular values, but where principal
component regression thresholds the singular values, ridge
regression shrinks them



Ridge and the bias-variance trade-off



Bias

- Assume that the data arise from a linear model y ~ N(X5, oI,),
then (3 will be a biased estimate of 5. Throughout this section
Xis assumed fixed, n > p and X has full column rank

— The ridge estimator can be expressed as
By = (XX + AL) 1X'X5

— We can get an explicit expression for the bias

~

Bias(3y) = E(B\) — B

= Vdiag( A

d%—l—)\"”’df,-i—)\

v
P

A
= Z"Jm<"i= B)
j J

=1



Variance

— Similarly there is a nice expression for the covariance matrix

d dy
(dF+ X277 (5 + )2
dJZ

Var(f)) = o?Vdiag(

)i
2§p:

j=1

— With A = 0, this is Var(8) = 62(X'X)~! = Var(f) for A > 0



Mean Squared Error

- MSE of the ridge regression estimator

MSE(ﬁ)\) = E[(B)\ —A B)t(BA - BA)} R
= tr[Var(p))] + Bias(f3,)'Bias(3))

— Theorem (Theobald, 1974) ) )
There exists A > 0 such that MSE(3)) < MSE(f).
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Expected prediction error

— When we make predictions y; = xfBA at x;

MSE(3:) = E[(xfy — x5)?]
= xﬁVar(B,\)x,- + [xﬁBiaS(BA)P

- Expected prediction error

n

B[S G- )] = - S MSEGH) + 2
i=1 i=1



Longley data
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Orthonormal design matrix

- Consider an orthonormal design matrix X, i.e.

XX=1=(XX)" eg

1 -1
1] -1 1
X_E 1 -1
1 1

- Bz\ 1 B
- Var(/B)\) 1+)\

- MSE(ﬁA) = (1‘?_7)\)2 + E\l_ll’il)g with minimum at A =

[EIR



Ridge and leave-one-out cross validation



LOO

- For n-fold (LOO) CV, we have another beautiful result for ridge
and other linear operators

n n

1 A(—i 1 yi — XiBr\?
L00s = 3 (-8 =2 30 (=)

i=1 i=1

where Bg\_ ) is the ridge estimate computed using the (n — 1)
observations with the pair (x;, y;) and

R = X(X'X + \) 71X

- The equation says we can compute all the LOO residuals for
ridge from the original residuals, each scaled up by 1/(q — R}})

~ We can obtain R efficiently for all A via

&
A : 1
R —Ud1ag< 21+)\,..., pz—i-)\)Ut



— For each pair (x;, ;) left out, we solve

mmz yi—xiB) + AllB|°
I#i

with solution Bg_ D,

- Let yf = xfﬁi(\f ) If we insert the pair (x;, y7) back into the size
n — 1 dataset, it will not change the solution

— Back at a full n dataset, and using the linearity of the ridge
operator, we have

ZR yl+Rllyl ZRllyl Ruyl llyl - yl Rllyl+Rllyl
I#i

from which we see that (y; — y*) = (y; — 3)/(1 — R})



GCV

— The identity tr(R*) = 31| R} suggests R} ~ Ltr(R*)
— Generalized cross validation
1~ (31— xBy)?

n (1— %tr(R’\))2



Diabetes data

442, p =10
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Ridge and the kernel trick



— The fitted values from ridge regression are
I = XXX+ L) X'y (a)
- An alternative way of writing this is suggested by the following

XXX+ ML) = (XX+ )X
(X'X+AL)7IX = XI(O0¢ + )~
X(X'X+AL)'Xly = XX(XX + ML)y

giving
ya= KK+ L)'y (5)

where K = XX' = {xx;} is the n X n gram matrix of pairwise
inner products, where x} and x; are the ith and jth row of X

— Complexity can be expressed in terms of floating point
operations (flops) required to find the solution. (4) requires
O(np? + p?) operations, (5) O(pn® + n3) operations



- Suppose we want to add all pairwise interactions

Xil, Xi25 - - -y Xip
Xi1 Xil, Xi1 Xi2; - - - » Xil Xip
XipXil, XipXi2, - - - 5 XipXip

giving O(p?) columns in the design matrix. Since (5) now
requires O(p?n® 4 n?) operations, for large p it can be
computationally prohibitive

- However, K can be computed directly with
1
Ky=(5+ xix;)? Z XikXjk + Z Xk XiIXjkXjl

this amounts to an inner product between vectors of the form
(xih ey Xipy Xl Xily - - - 5 Xil Xipy Xi2Xi15 - - -5 Xi2Xip, - - - 7xipxip)

and it requires O(pn?) operations



