References

- Hastie, T. (2020). Ridge regularization: an essential concept in data science. Technometrics, 62(4), 426-433.
- van Wieringen (2015). Lecture notes on ridge regression. arXiv preprint arXiv:1509.09169.

Condition number

– In the linear model, the estimate of β is obtained by solving the normal equations

$$X^{\mathsf{T}}X\beta = X^{\mathsf{T}}y$$

 The difficulty of solving this system of linear equations can be described by the *condition number*

$$\kappa(X^\mathsf{T} X) = \frac{d_{\max}}{d_{\min}}$$

the ratio between the largest and smallest singular values of X^TX

 If the condition number is very large, then the matrix is said to be *ill-conditioned* (see Section 2.6 of CASL) Toy linear model with n = p = 2. We set *X* and β as

$$X = \begin{bmatrix} 10^9 & -1 \\ -1 & 10^{-5} \end{bmatrix} \quad \beta = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

And if we define $y = X\beta$, this gives

$$y = \begin{bmatrix} 10^9 & -1 \\ -1 & 10^{-5} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 10^9 - 1 \\ -0.99999 \end{bmatrix}$$

The reciprocal of condition number, i.e. $1/\kappa(X^TX) = 9.998e - 29$, is smaller than (my) machine precision, i.e. 2.220446e - 16

```
X <- matrix(c(10<sup>9</sup>, -1, -1, 10<sup>(-5)</sup>), 2, 2)
beta <- c(1,1)
v <- X %*% beta</pre>
```

y <- X %*% beta

solve(crossprod(X), crossprod(X, y))

Error in solve.default(crossprod(X)) :
system is computationally singular:

reciprocal condition number = 9.998e-29

.Machine\$double.eps 2.220446e-16

Ridge regression solution

- Ridge provides a remedy for an *ill-conditioned* X^tX matrix
- If our $n \times p$ design matrix X has column rank less than p (or nearly so in terms of its condition number), then the usual least-squares regression equation is in trouble:

$$\hat{\beta} = (X^t X)^{-1} X^t y$$

– What we do is add a *ridge* on the diagonal - $X^tX + \lambda I_p$ with $\lambda > 0$ - which takes the problem away:

$$\hat{\beta}_{\lambda} = (X^t X + \lambda I_p)^{-1} X^t y$$

 This is the ridge regression solution proposed by Hoerl and Kennard (1970) - Ridge regression modifies the normal equations to

$$(X^{\mathsf{T}}X + \lambda I_p)\beta = X^{\mathsf{T}}y$$

and the condition number of $(X^{\mathsf{T}}X + \lambda I_p)$ is

$$\kappa(X^\mathsf{T}X + \lambda I_p) = \frac{d_{\max} + \lambda}{d_{\min} + \lambda}$$

- Notice that even if $d_{\min} = 0$, the condition number will be finite if $\lambda > 0$
- This technique is known as Tikhonov regularization, after the Russian mathematician Andrey Tikhonov

Penalized (Lagrange) form

The optimization problem that ridge is solving

$$\min_{\beta} \|y - X\beta\|^2 + \lambda \|\beta\|^2 \tag{1}$$

where $\|\cdot\|$ is the ℓ_2 Euclidean norm

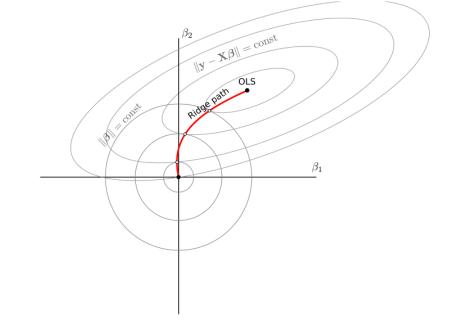
- The ridge remedy comes with consequences. The ridge estimate is biased toward zero. It also has smaller variance than the OLS estimate.
- Selecting λ amounts to a bias-variance trade-off

Constrained form

We can also express the ridge problem as

$$\min_{\beta} \|y - X\beta\|^2 \quad \text{subject to } \|\beta\| \le c \tag{2}$$

– The two problems are of course equivalent: every solution $\hat{\beta}_{\lambda}$ in (1) is a solution to (2) with $c=\|\hat{\beta}_{\lambda}\|$



Bayesian view

- Assume

$$y_i|\beta, X = x_i \sim x_i^t \beta + \epsilon_i$$

with ϵ_i i.i.d. $N(0, \sigma_{\epsilon}^2)$. Here we think of β as random as well, and having a prior distribution

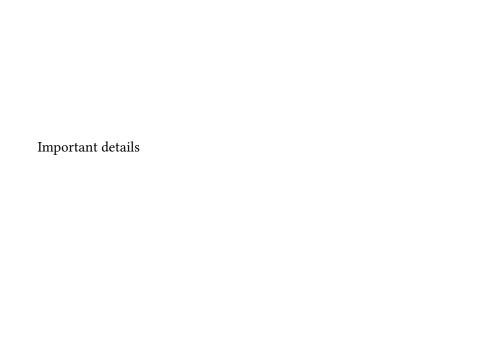
$$\beta \sim N(0, \sigma_{\beta}^2 I_p)$$

 Then the negative log posterior distribution is proportional to (1), with

$$\lambda = \frac{\sigma_{\epsilon}^2}{\sigma_{\beta}^2}$$

and the posterior mean is the ridge estimator

– The smaller the prior variance parameter σ_{β}^2 , the more the posterior mean is shrunk toward zero, the prior mean for β



 When including an intercept term, we usually leave this coefficient unpenalized, solving

$$\min_{\alpha,\beta} \|y - 1\alpha - X\beta\|^2 + \lambda \|\beta\|^2$$

- Ridge regression is not invariant under scale transformations of the variables, so it is standard practice to centre each column of X (hence making them orthogonal to the intercept term) and then scale them to have Euclidean norm \sqrt{n}
- It is straightforward to show that after this standardisation of X, $\hat{\alpha} = \bar{y}$, so we can also centre y and then remove α from our objective function
- Different R packages have different defaults, e.g. glmnet also standardizes y

- Let $\tilde{y} = (y - 1\bar{y})$ and $\tilde{X} = (X - 1\bar{x}^t) \operatorname{diag}(1/s)$ be the centered y and standardized X, respectively, with

and standardized
$$X$$
, respectively, with
$$- \bar{y} = (1/n) \sum_{i=1}^{n} y_i,$$

$$- \bar{x} = (1/n) Y_1$$

 $- \bar{x} = (1/n)X'1.$

$$- \bar{y} = (1/n) \sum_{i=1}^{n} y_i,
- \bar{x} = (1/n)X'1,$$

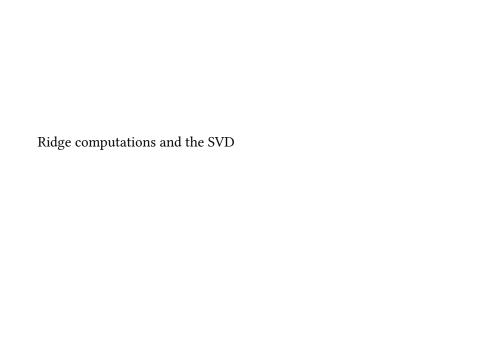
$$- \bar{y} = (1/n) \sum_{i=1}^{n} y_i,
- \bar{x} = (1/n)X'1,
- s = (s_1, ..., s_p)^t \text{ and } s_i^2 = (1/n) \sum_{i=1}^{n} (x_{ii} - \bar{x}_i)^2$$

Compute the scaled coefficients

Transform back to unscaled coefficients

 $\tilde{\beta}_{\lambda} = (\tilde{X}^t \tilde{X} + \lambda I_b)^{-1} \tilde{X}^t \tilde{\nu}$

 $\hat{\beta}_{\lambda} = \operatorname{diag}(1/s)\tilde{\beta}_{\lambda} \quad \hat{\alpha} = \bar{y} - \bar{x}^t\hat{\beta}_{\lambda}$



Tuning parameter

- In many wide-data and other ridge applications, we need to treat λ as a tuning parameter, and select a good value for the problem at hand.
- For this task we have a number of approaches available for selecting λ from a series of candidate values:
 - With a validation dataset separate from the training data, we can evaluate the prediction performance at each value of λ
 - Cross-validation does this effciently using just the training data, and leave-one-out (LOO) CV is especially efficient

SVD

- Whatever the approach, they all require computing a number of solutions $\hat{\beta}_{\lambda}$ at different values of λ : the *ridge regularization path*
- We can achieve great efficiency via the (full form) Singular Value Decomposition (SVD)

$$X = UDV^t$$

where $U n \times n$ orthogonal, $V p \times p$ orthogonal and $D n \times p$ diagonal, with diagonal entries $d_1 \ge ... \ge d_m \ge 0$, where $m = \min(n, p)$

- From the SVD we get

$$\hat{\beta}_{\lambda} = (VD^{t}U^{t}UDV^{t} + \lambda VV^{t})^{-1}VD^{t}U^{t}y$$

$$= V(D^{t}D + \lambda I_{p})^{-1}D^{t}U^{t}y$$

$$= \sum_{d_{j}>0} v_{j}\frac{d_{j}}{d_{j}^{2} + \lambda} \langle u_{j}, y \rangle$$
(3)

where $v_j(u_j)$ is the *j*th column of V(U), and $\langle a, b \rangle = a^t b$

- Once we have the SVD of *X*, we have the ridge solution for all values of λ
- When n > p the ridge solution with $\lambda = 0$ is simply the OLS solution for β
- When p > n, there are infinitely many least squares solutions for β , all leading to a zero-residual solution. From (3) with $\lambda = 0$ we get a unique solution, the one with minimum Euclidean norm

- Fitted values

 $=\sum_{d_i>0}u_jrac{d_j^2}{d_j^2+\lambda}\langle u_j,y
angle$

- $\hat{y}_{\lambda} = U \operatorname{diag}\left(\frac{d_1^2}{d_1^2 + \lambda}, \dots, \frac{d_p^2}{d_p^2 + \lambda}\right) U^t y$

Principal components regression

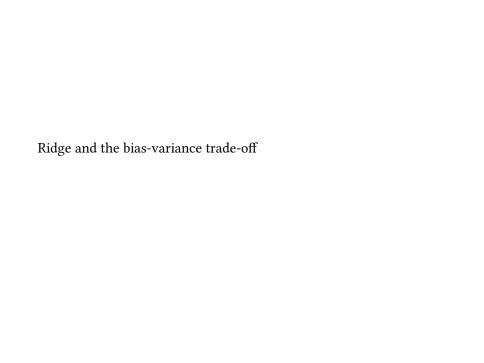
- Ridge

$$\hat{eta}_{\lambda} = V ext{diag}\Big(rac{d_1}{d_1^2 + \lambda}, \ldots, rac{d_p}{d_p^2 + \lambda}\Big) U^t y$$

- Principal components regression with *q* components

$$\hat{\beta}_q = V \operatorname{diag}\left(\frac{1}{d_1}, \dots, \frac{1}{d_q}, 0, \dots, 0\right) U^t y$$

 Both operate on the singular values, but where principal component regression thresholds the singular values, ridge regression shrinks them



Bias

- Assume that the data arise from a linear model $y \sim N(X\beta, \sigma^2 I_n)$, then $\hat{\beta}_{\lambda}$ will be a biased estimate of β . Throughout this section X is assumed fixed, n > p and X has full column rank
- The ridge estimator can be expressed as

$$\hat{\beta}_{\lambda} = (X^t X + \lambda I_p)^{-1} X^t X \hat{\beta}$$

We can get an explicit expression for the bias

$$\begin{aligned} \operatorname{Bias}(\hat{\beta}_{\lambda}) &= & \mathbb{E}(\hat{\beta}_{\lambda}) - \beta \\ &= & V \operatorname{diag}\left(\frac{\lambda}{d_{1}^{2} + \lambda}, \dots, \frac{\lambda}{d_{p}^{2} + \lambda}\right) V^{t} \beta \\ &= & \sum_{j=1}^{p} v_{j} \frac{\lambda}{d_{j}^{2} + \lambda} \langle v_{j}, \beta \rangle \end{aligned}$$

Variance

- Similarly there is a nice expression for the covariance matrix

$$\operatorname{Var}(\hat{\beta}_{\lambda}) = \sigma^{2} V \operatorname{diag}(\frac{d_{1}^{2}}{(d_{1}^{2} + \lambda)^{2}}, \dots, \frac{d_{p}^{2}}{(d_{p}^{2} + \lambda)^{2}}) V^{t}$$

$$= \sigma^{2} \sum_{i=1}^{p} \frac{d_{j}^{2}}{(d_{j}^{2} + \lambda)^{2}} v_{j} v_{j}^{t}$$

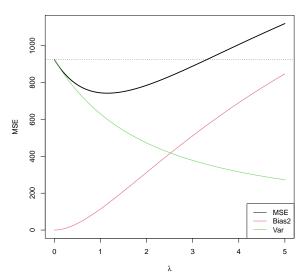
- With $\lambda = 0$, this is $\operatorname{Var}(\hat{\beta}) = \sigma^2(X^tX)^{-1} \succeq \operatorname{Var}(\hat{\beta}_{\lambda})$ for $\lambda > 0$

Mean Squared Error

- MSE of the ridge regression estimator

$$MSE(\hat{\beta}_{\lambda}) = \mathbb{E}[(\hat{\beta}_{\lambda} - \beta)^{t}(\hat{\beta}_{\lambda} - \beta)]$$
$$= tr[Var(\hat{\beta}_{\lambda})] + Bias(\hat{\beta}_{\lambda})^{t}Bias(\hat{\beta}_{\lambda})$$

- Theorem (Theobald, 1974)
There exists $\lambda > 0$ such that $MSE(\hat{\beta}_{\lambda}) < MSE(\hat{\beta})$.



Expected prediction error

- When we make predictions $\hat{y}_i = x_i^t \hat{\beta}_{\lambda}$ at x_i

$$MSE(\hat{y}_i) = \mathbb{E}[(x_i^t \hat{\beta}_{\lambda} - x_i^t \beta)^2]$$

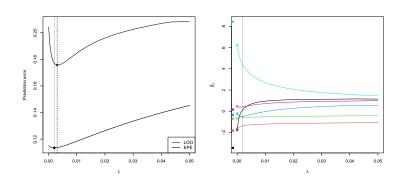
= $x_i^t Var(\hat{\beta}_{\lambda}) x_i + [x_i^t Bias(\hat{\beta}_{\lambda})]^2$

Expected prediction error

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}(\hat{y}_i - y_i^{\text{new}})^2\right] = \frac{1}{n}\sum_{i=1}^{n}\text{MSE}(\hat{y}_i) + \sigma^2$$

Longley data

$$n = 16, p = 6$$



Orthonormal design matrix

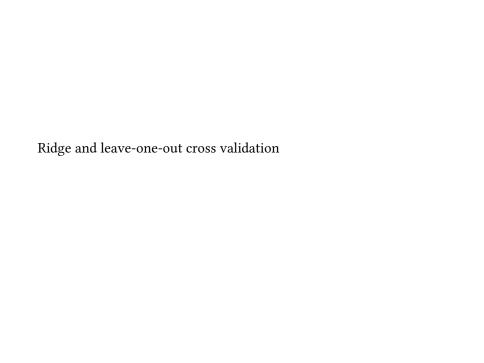
- Consider an orthonormal design matrix X, i.e. $X^tX = I_p = (X^tX)^{-1}$, e.g.

$$X = \frac{1}{2} \begin{bmatrix} -1 & -1 \\ -1 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix}$$

$$-\hat{\beta}_{\lambda} = \frac{1}{(1+\lambda)}\hat{\beta}$$

-
$$\operatorname{Var}(\hat{\beta}_{\lambda}) = \frac{\sigma^2}{(1+\lambda)^2} I_p$$

- MSE
$$(\hat{\beta}_{\lambda}) = \frac{p\sigma^2}{(1+\lambda)^2} + \frac{\lambda^2 \|\beta\|^2}{(1+\lambda)^2}$$
 with minimum at $\lambda = \frac{p\sigma^2}{\|\beta\|^2}$



LOO

 For *n*-fold (LOO) CV, we have another beautiful result for ridge and other linear operators

$$LOO_{\lambda} = \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i^t \hat{\beta}_{\lambda}^{(-i)})^2 = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - x_i^t \hat{\beta}_{\lambda}}{1 - R_{ii}^{\lambda}} \right)^2$$

where $\hat{\beta}_{\lambda}^{(-i)}$ is the ridge estimate computed using the (n-1) observations with the pair (x_i, y_i) and

$$R^{\lambda} = X(X^{t}X + \lambda I)^{-1}X^{t}$$

- The equation says we can compute all the LOO residuals for ridge from the original residuals, each scaled up by $1/(q R_{ii}^{\lambda})$
- We can obtain R^{λ} efficiently for all λ via

$$R^{\lambda} = U \operatorname{diag}\left(\frac{d_1^2}{d_1^2 + \lambda}, \dots, \frac{d_p^2}{d_p^2 + \lambda}\right) U^t$$

- For each pair (x_i, y_i) left out, we solve

$$\min_{\beta} \sum_{l \neq i} (y_l - x_l^t \beta) + \lambda \|\beta\|^2$$

with solution $\hat{\beta}_{\lambda}^{(-i)}$.

- Let $y_i^* = x_i^* \hat{\beta}_{\lambda}^{(-i)}$. If we insert the pair (x_i, y_i^*) back into the size n-1 dataset, it will not change the solution
- Back at a full *n* dataset, and using the linearity of the ridge operator, we have

$$y_{i}^{*} = \sum_{l \neq i} R_{il}^{\lambda} y_{l} + R_{ii}^{\lambda} y_{i}^{*} = \sum_{l=1}^{n} R_{il}^{\lambda} y_{l} - R_{ii}^{\lambda} y_{i} + R_{ii}^{\lambda} y_{i}^{*} = \hat{y}_{i} - R_{ii}^{\lambda} y_{i} + R_{ii}^{\lambda} y_{i}^{*}$$

from which we see that $(y_i - y_i^*) = (y_i - \hat{y}_i)/(1 - R_{ii}^{\lambda})$

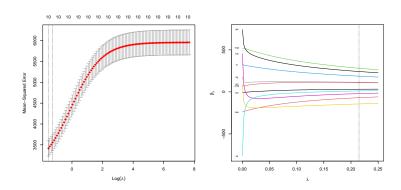
GCV

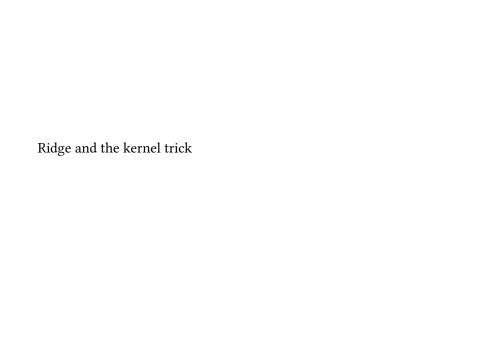
- The identity $\operatorname{tr}(R^{\lambda}) = \sum_{i=1}^{n} R_{ii}^{\lambda}$ suggests $R_{ii}^{\lambda} \approx \frac{1}{n} \operatorname{tr}(R^{\lambda})$
- Generalized cross validation

$$GCV_{\lambda} = \frac{1}{n} \sum_{i=1}^{n} \frac{(y_i - x_i^t \hat{\beta}_{\lambda})^2}{(1 - \frac{1}{n} tr(R^{\lambda}))^2}$$

Diabetes data

$$n = 442, p = 10$$





- The fitted values from ridge regression are

$$\hat{y}_{\lambda} = X(X^t X + \lambda I_p)^{-1} X^t y \tag{4}$$

- An alternative way of writing this is suggested by the following

$$X^{t}(XX^{t} + \lambda I_{n}) = (X^{t}X + \lambda I_{p})X^{t}$$
$$(X^{t}X + \lambda I_{p})^{-1}X^{t} = X^{t}(XX^{t} + \lambda I_{n})^{-1}$$
$$X(X^{t}X + \lambda I_{p})^{-1}X^{t}y = XX^{t}(XX^{t} + \lambda I_{n})^{-1}y$$

giving

$$\hat{y}_{\lambda} = K(K + \lambda I_n)^{-1} y \tag{5}$$

where $K = XX^t = \{x_i^t x_j\}_{ij}$ is the $n \times n$ gram matrix of pairwise inner products, where x_i^t and x_j^t are the ith and jth row of X

- Complexity can be expressed in terms of floating point operations (flops) required to find the solution. (4) requires $O(np^2 + p^3)$ operations, (5) $O(pn^2 + n^3)$ operations

- Suppose we want to add all pairwise interactions

$$x_{i1}, x_{i2}, \dots, x_{ip}$$
 $x_{i1}x_{i1}, x_{i1}x_{i2}, \dots, x_{i1}x_{ip}$
 \vdots
 $x_{ip}x_{i1}, x_{ip}x_{i2}, \dots, x_{ip}x_{ip}$

giving $O(p^2)$ columns in the design matrix. Since (5) now requires $O(p^2n^2 + n^3)$ operations, for large p it can be computationally prohibitive

- However, *K* can be computed directly with

$$K_{ij} = (\frac{1}{2} + x_i^t x_j)^2 - \frac{1}{4} = \sum_k x_{ik} x_{jk} + \sum_{k \mid l} x_{ik} x_{il} x_{jk} x_{jl}$$

this amounts to an inner product between vectors of the form

$$(x_{i1},\ldots,x_{ip},x_{i1}x_{i1},\ldots,x_{i1}x_{ip},x_{i2}x_{i1},\ldots,x_{i2}x_{ip},\ldots,x_{ip}x_{ip})$$

and it requires $O(pn^2)$ operations