
The Annals of Applied Statistics
2010, Vol. 4, No. 1, 179–202
DOI: 10.1214/09-AOAS281
© Institute of Mathematical Statistics, 2010

A SPECTRAL GRAPH APPROACH TO DISCOVERING
GENETIC ANCESTRY1

BY ANN B. LEE, DIANA LUCA AND KATHRYN ROEDER

Carnegie Mellon University, Genentech Inc. and Carnegie Mellon University

Mapping human genetic variation is fundamentally interesting in fields
such as anthropology and forensic inference. At the same time, patterns of ge-
netic diversity confound efforts to determine the genetic basis of complex dis-
ease. Due to technological advances, it is now possible to measure hundreds
of thousands of genetic variants per individual across the genome. Principal
component analysis (PCA) is routinely used to summarize the genetic sim-
ilarity between subjects. The eigenvectors are interpreted as dimensions of
ancestry. We build on this idea using a spectral graph approach. In the process
we draw on connections between multidimensional scaling and spectral ker-
nel methods. Our approach, based on a spectral embedding derived from the
normalized Laplacian of a graph, can produce more meaningful delineation
of ancestry than by using PCA. The method is stable to outliers and can more
easily incorporate different similarity measures of genetic data than PCA. We
illustrate a new algorithm for genetic clustering and association analysis on a
large, genetically heterogeneous sample.

1. Introduction. Human genetic diversity is of interest in a broad range of
contexts, ranging from understanding the genetic basis of disease to applications
in forensic science. Mapping clusters and clines in the pattern of genetic diver-
sity provides the key to uncovering the demographic history of our ancestors. To
determine the genetic basis of complex disease, individuals are measured at large
numbers of genetic variants across the genome as part of the effort to discover the
variants that increase liability to complex diseases such as autism and diabetes.

Genetic variants, called alleles, occur in pairs, one inherited from each par-
ent. High throughput genotyping platforms routinely yield genotypes for hundreds
of thousands of variants per sample. These are usually single nucleotide variants
(SNPs), which have two possible alleles, hence, the genotype for a particular vari-
ant can be coded based on allele counts (0, 1 or 2) at each variant. The objective is
to identify SNPs that either increase the chance of disease, or are physically nearby
an SNP that affects disease status.

Due to demographic, biological and random forces, variants differ in allele
frequency in populations around the world [Cavalli-Sforza, Menozzi and Piazza
(1994)]. An allele that is common in one geographical or ethnic group may be
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FIG. 1. Percent of adult population who are lactose intolerant (http://www.medbio.info/Horn/
Time). A gradient runs from north to south, correlating with the spread of the lactase mutation.
Finland provides an exception to the gradient due to the Asian influence in the north.

rare in another. For instance, the O blood type is very common among the indige-
nous populations of Central and South America, while the B blood type is most
common in Eastern Europe and Central Asia [Cavalli-Sforza, Menozzi and Piazza
(1994)]. The lactase mutation, which facilitates the digestion of milk in adults,
occurs with much higher frequency in northwestern Europe than in southeastern
Europe (Figure 1). Ignoring the structure in populations leads to spurious associ-
ations in case-control genetic association studies due to differential prevalence of
disease by ancestry.

Although most SNPs do not vary dramatically in allele frequency across popu-
lations, genetic ancestry can be estimated based on allele counts derived from in-
dividuals measured at a large number of SNPs. An approach known as structured
association clusters individuals to discrete subpopulations based on allele frequen-
cies [Pritchard, Stephens and Donnelly (2000a)]. This approach suffers from two
limitations: results are highly dependent on the number of clusters; and realistic
populations do not naturally resolve into discrete clusters. If fractional member-
ship in more than one cluster is allowed, the calculations become computationally
intractable for the large data sets currently available. A simple and appealing alter-
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native is principal component analysis (PCA) [Cavalli-Sforza, Menozzi and Piazza
(1994), Price et al. (2006), Patterson, Price and Reich (2006)], or principal compo-
nent maps (PC maps). This approach summarizes the genetic similarity between
subjects at a large number of SNPs using the dominant eigenvectors of a data-based
similarity matrix. Using this “spectral” embedding of the data, a small number of
eigenvectors is usually sufficient to describe the key variation. The PCA frame-
work provides a formal test for the presence of population structure based on the
Tracy–Widom distribution [Patterson, Price and Reich (2006), Johnstone (2001)].
Based on this theory, a test for the number of significant eigenvectors is obtained.

In Europe, eigenvectors displayed in two dimensions often reflect the geographi-
cal distribution of populations [Heath et al. (2008), Novembre et al. (2008)]. There
are some remarkable examples in the population genetics literature of how PC
maps can reveal hidden structures in human genetic data that correlate with toler-
ance of lactose across Europe [Tishkoff et al. (2007)], migration patterns and the
spread of farming technology from Near East to Europe [Cavalli-Sforza, Menozzi
and Piazza (1994)]. Although these stunning patterns can lead to overinterpreta-
tion [Novembre and Stephens (2008)], they are remarkably consistent across the
literature.

In theory, if the sample consists of k distinct subpopulations, k − 1 axes should
be sufficient to differentiate these subpopulations. In practice, finding a dimen-
sion reduction that delineates samples collected worldwide is challenging. For in-
stance, analysis of the four core HapMap samples (African, Chinese, European
and Japanese; HapMap-Consortium, 2005) using the classical principal compo-
nent map [Patterson, Price and Reich (2006)] does not reveal substructure within
the Asian sample; however, an eigenmap constructed using only the Asian sam-
ples discovers substructure [Patterson, Price and Reich (2006)]. Another feature
of PCA is its sensitivity to outliers [Luca et al. (2008)]. Due to outliers, numerous
dimensions of ancestry appear to model a statistically significant amount of varia-
tion in the data, but in actuality they function to separate a single observation from
the bulk of the data. This feature can be viewed as a drawback of the PCA method.

Software is available for estimating the significant eigenvectors via PCA (Eigen-
strat [Price et al. (2006)], smartpca [Patterson, Price and Reich (2006)] or GEM
[Luca et al. (2008)]). For population-based genetic association studies, such as
case-control studies, the confounding effect of genetic ancestry can be controlled
for by regressing out the eigenvectors [Price et al. (2006), Patterson, Price and Re-
ich (2006)], matching individuals with similar genetic ancestry [Luca et al. (2008),
Rosenbaum (1995)], or clustering groups of individuals with similar ancestry and
using the Cochran–Mantel–Haenszel test. In each situation, spurious associations
are controlled better if the ancestry is successfully modeled.

To overcome some of the challenges encountered in constructing a successful
eigenmap of the genetic ancestry, we propose a spectral graph approach. These
methods are more flexible than PCA (which can be considered as a special case)
and allow for different ways of modeling structure and similarities in data. The
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basic idea is to represent the population as a weighted graph, where the vertex
set is comprised by the subjects in the study, and the weights reflect the degree
of similarity between pairs of subjects. The graph is then embedded in a lower-
dimensional space using the top eigenvectors of a function of the weight matrix.
Our approach utilizes a spectral embedding derived from the so-called normalized
graph Laplacian. Laplacian eigenmaps and spectral graph methods are well known
and widely used in machine learning but unfamiliar to many classically trained
statisticians and biologists. The goals of this work are the following:

• to demonstrate the use of spectral graph methods in the analysis of population
structure in genetic data,

• to emphasize the connection between PCA methods used in population genetics
and more general spectral methods used in machine learning,

• to develop a practical algorithm and version of Laplacian eigenmaps for genetic
association studies.

We proceed by discussing the link between PCA, multidimensional scaling (MDS)
and spectral graph methods. We then present a practical scheme for determining
the number of significant dimensions of ancestry by studying the gap statistic of
the eigenvalues of the graph Laplacian. We conclude with a presentation of the
new algorithm, which is illustrated via analyses of the POPRES data [Nelson et al.
(2008)] and simulated data with spurious associations.

2. Methods.

2.1. Spectral embeddings revisited. Connection to MDS and kernel PCA. We
begin by making the connection between multidimensional scaling (MDS) and the
principal component (PC) method explicit: Suppose Z is an n × p data matrix,
with rows indexed by n subjects and columns indexed by p biallelic SNP markers.
Center each column (marker) to have mean 0; denote the centered data matrix
X = AZ where A = I − 1

n
11t is an n × n centering matrix. The elements of the

ith row of X represent the genetic information for subject i, xi = (xi1, . . . , xip).
A singular value decomposition of X gives

X = U�V t ,

where � is a diagonal matrix with the singular values γ1, γ2, . . . as diagonal entries.
The p × p matrix

S = 1

n
XtX = 1

n
V �2V t

is the sample covariance matrix of markers. The eigenvectors v1,v2, . . . are called
principal components. (If the columns of X are furthermore normalized to have
standard deviation 1, then S is the sample correlation matrix of markers.) In popu-
lation genetics, Cavalli–Sforza and others compute the dual n × n matrix

H = XXt = U�2Ut,
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and use the rescaled eigenvectors of H as coordinates of subject i,

(λ
1/2
1 u1(i), . . . , λ

1/2
d ud(i)),(1)

where λj = γ 2
j and λ1 ≥ λ2 ≥ · · ·. Geometrically, this corresponds to project-

ing the data xi onto the affine hyperplane spanned by the first d principal com-
ponents, that is, computing the projection indices or principal component scores
(xi · v1, . . . ,xi · vd). Typically, eigenvectors that correspond to large eigenvalues
reveal the most important dimensions of ancestry.

The matrix H is often referred to as the “covariance matrix of individuals” but
this is a bit of a misnomer. In fact, some of the intuition behind the eigenmap
method comes from thinking of H as an inner product matrix or Gram matrix.
In multivariate statistics, the method of mapping data with principal component
scores is known as classical multidimensional scaling. Gower (1966) made explicit
the connection between classical MDS and PCA, and demonstrated that the prin-
cipal components can be extracted from the inner product matrix H . The approach
is also directly related to kernel PCA [Schölkopf, Smola and Müller (1998)] where
all computations are expressed in terms of H .

One can show that principal component mapping solves a particular opti-
mization problem with an associated distance metric [Torgerson (1952), Mardia
(1978)]. Refer to the centered data matrix as a feature matrix X where the ith row
xi = (zi1 − z̄1, . . . , zip − z̄p) is the “feature vector” of the ith individual. In the

normalized case, the corresponding vector is xi = (
zi1−z̄1

s1
, . . . ,

xip−z̄p

sp
), where z̄j

and sj , respectively, are the sample mean and sample standard deviation of vari-
able (marker) j . The matrix H is a positive semi-definite (PSD) matrix, where
element hij = xi · xj reflects the similarity between individuals i and j . We will
refer to XXt as the kernel of the PC map. The main point is that the matrix H in-
duces a natural Euclidean distance between individuals. We denote this Euclidean
distance between the ith and j th individuals as m(i, j), where

m(i, j)2 ≡ hii + hjj − 2hij = ‖xi − xj‖2.(2)

Consider a low-dimensional representation �d(i) = (φ1(i), . . . , φd(i)) of in-
dividuals i = 1, . . . , n, where the dimension d < p. Define squared distances
m̂(i, j)2 = ‖�d(i) − �d(j)‖2 for this configuration. To measure the discrepancy
between the full- and low-dimensional space, let δ = ∑

i,j (m(i, j)2 − m̂(i, j)2).
This quantity is minimized over all d-dimensional configurations by the top d

eigenvectors of H , weighted by the square root of the eigenvalues [Equation (1)];
see Theorem 14.4.1 in Mardia, Kent and Bibby (1979). Thus, principal compo-
nent mapping is a form of metric multidimensional scaling. It provides the optimal
embedding if the goal is to preserve the squared (pairwise) Euclidean distances
m(i, j)2 induced by H = XXt .

MDS was originally developed by psychometricians to visualize dissimilarity
data [Torgerson (1952)]. The downside of using PCA for a quantitative analysis
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is that the associated metric is highly sensitive to outliers, which diminishes its
ability to capture the major dimensions of ancestry. Our goal in this paper is to
develop a spectral embedding scheme that is less sensitive to outliers and that is
better, in many settings, at clustering observations similar in ancestry. We note that
the choice of eigenmap is not unique: Any positive semi-definite matrix H defines
a low-dimensional embedding and associated distance metric according to Equa-
tions (1) and (2). Hence, we will use the general framework of MDS and principal
component maps but introduce a different kernel for improved performance. Below
we give some motivation for the modified kernel and describe its main properties
from the point of view of spectral graph theory and spectral clustering.

2.2. Spectral clustering and Laplacian eigenmaps. Spectral clustering tech-
niques [von Luxburg (2007)] use the spectrum of the similarity matrix of the data
to perform dimensionality reduction for clustering in fewer dimensions. These
methods are more flexible than clustering algorithms that group data directly in
the given coordinate system. Spectral clustering has not been, heretofore, fully
explored in the context of a large number of independent genotypes, such as is
typically obtained in genome-wide association studies. In the framework of spec-
tral clustering, the decomposition of XXt in PCA corresponds to an un-normalized
clustering scheme. Such schemes tend to return embeddings where the principle
axes separate outliers from the bulk of the data. On the other hand, an embed-
ding based on a normalized data similarity matrix identifies directions with more
balanced clusters.

To introduce the topic, we require the language of graph theory. For a group
of n subjects, define a graph G where {1,2, . . . , n} is the vertex set (comprised of
subjects in the study). The graph G can be associated with a weight matrix W that
reflects the strength of the connections between pairs of similar subjects: the higher
the value of the entry wij , the stronger the connection between the pair (i, j).
Edges that are not connected have weight 0. There is flexibility in the choice of
weights and there are many ways one can incorporate application- or data-specific
information. The only condition on the matrix W is that it is symmetric with non-
negative entries.

Laplacian eigenmaps [Belkin and Niyogi (2003)] find a new representation
of the data by decomposing the so-called graph Laplacian—a discrete version
of the Laplace operator on a graph. Motivated by MDS, we consider a rescaled
parameter-free variation of Laplacian eigenmaps. A similar approach is used in
diffusion maps [Coifman et al. (2005)] and Euclidean commute time (ECT) maps
[Fouss et al. (2007)]; both of these methods are MDS-based and lead to Laplacian
eigenmaps with rescaled eigenvectors.2

2We have here chosen a spectral transform that is close to the original PC map, but it is straight-
forward to associate the kernel with a diffusion or ECT metric.
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The Laplacian matrix L of a weighted graph G is defined by

L(i, j) =
{−wij , if i �= j ,

di − wii, if i = j ,

where di = ∑
j wij is the so-called degree of vertex i. In matrix form,

L = D − W,

where D = diag(d1, . . . , dn) is a diagonal matrix. The normalized graph Laplacian
is a matrix defined as

L = D−1/2LD−1/2.

A popular choice for weights is wij = exp(−‖xi − xj‖2/2σ 2), where the pa-
rameter σ controls the size of local neighborhoods in the graph. Here we instead
use a simple transformation of the (global) PCA kernel with no tuning parameters;
in the Discussion we later suggest a local kernel based on identity-by-state (IBS)
sharing for biallelic data. The main point is that one can choose a weight matrix
suited for the particular application. Entries in the matrix XXt measure the simi-
larity between subjects, making it a good candidate for a weight matrix on a fully
connected graph: the larger the entry for a pair (i, j), the stronger the connection
between the subjects within the pair. We define the weights as

wij =
{√

xi · xj , if xi · xj ≥ 0,
0, otherwise.

Directly thresholding XXt guarantees non-negative weights but creates a skewed
distribution of weights. To address this problem, we have added a square-root
transformation for more symmetric weight distributions. This transformation also
adds to the robustness to outliers.

Let νi and ui be the eigenvalues and eigenvectors of L. Let λi = max{0,1−νi}.
We replace the PCA kernel XXt with (I − L)+, where I is the identity matrix and
(I − L)+ ≡ ∑

i λiuiut
i is a positive semi-definite approximation of I − L. We then

map the ith subject into a lower-dimensional space according to Equation (1). In
embeddings, we often do not display the first eigenvector u1 associated with the
eigenvalue λ1 = 1, as this vector only reflects the square root of the degrees of the
nodes.

In the Results, we show that estimating the ancestry from the eigenvectors of L
(which are the same as the eigenvectors of I − L) leads to more meaningful clusters
than ancestry estimated directly from XXt . Some intuition as to why this is the
case can be gained by relating eigenmaps to spectral clustering and “graph cuts.” In
graph-theoretic language, the goal of clustering is to find a partition of the graph so
that the connections between different groups have low weight and the connections
within a group have high weight. For two disjoint sets A and B of a graph, the cut
across the groups is defined as cut(A,B) = ∑

i∈A,j∈B wij . Finding the partition
with the minimum cut is a well-studied problem; however, as noted, for example,
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by Shi and Malik (2000), the minimum cut criterion favors separating individual
vertices or “outliers” from the rest of the graph. The normalized cut approach by
Shi and Malik circumvents this problem by incorporating the volume or weight
of the edges of a set into a normalized cost function N cut(A,B) = cut(A,B)

vol(A)
+

cut(A,B)
vol(B)

, where vol(A) = ∑
i∈A di and vol(B) = ∑

i∈B di . This cost function is
large when the set A or B is small. Our SpectralGEM algorithm (below) exploits
the fact that the top eigenvectors of the graph Laplacian provide an approximate
solution to the Ncut minimization problem; see Shi and Malik for details. Smartpca
[Patterson, Price and Reich (2006)] and standard GEM [Luca et al. (2008)], on the
other hand, are biased toward embeddings that favor small and tight clusters in the
data.

2.3. Number of dimensions via eigengap heuristic. For principal component
maps, one can base a formal test for the number of significant dimensions on
theoretical results concerning the Tracy–Widom distribution of eigenvalues of a
covariance matrix in the null case [Patterson, Price and Reich (2006), Johnstone
(2001)]. The Tracy–Widom theory does not extend to the eigenvalues of the graph
Laplacian where matrix elements are correlated. Instead, we introduce a different
approach, known as the eigengap heuristic, based on the difference in magnitude
between successive eigenvalues.

The graph Laplacian has several properties that make it useful for cluster analy-
sis. Both its eigenvalues and eigenvectors reflect the connectivity of the data. Con-
sider, for example, the normalized graph Laplacian where the sample consists of d

distinct clusters. Sort the eigenvalues 0 = ν1 ≤ ν2 ≤ · · · ≤ νn of L in ascending
order. The matrix L has several key properties [Chung (1997)]: (i) The number d

of eigenvalues equal to 0 is the number of connected components S1, . . . , Sd of the
graph. (ii) The first positive eigenvalue νd+1 reflects the cohesiveness of the indi-
vidual components; the larger the eigenvalue νd+1, the more cohesive the clusters.
(iii) The eigenspace of 0 (i.e., the vectors corresponding to eigenvalues equal to 0)
is spanned by the rescaled indicator vectors D1/21Sk

, where 1Sk
= 1 if i ∈ Sk , and

1Sk
= 0 otherwise. It follows from (iii) that for the ideal case where we have d com-

pletely separate populations (and the node degrees are similar), individuals from
the same population map into the same point in an embedding defined by the d

first eigenvectors of L. For example, for d = 3 populations and n = 6 individuals,
the n × d embedding matrix could have the form

U = [D1/21S1,D
1/21S2,D

1/21S3] =

⎛
⎜⎜⎜⎜⎜⎜⎝

√
d1 0 0√
d2 0 0√
d3 0 0
0

√
d4 0

0
√

d5 0
0 0

√
d6

⎞
⎟⎟⎟⎟⎟⎟⎠

≈

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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The rows of U define the new representation of the n individuals. Applying k-
means to the rows finds the clusters trivially without the additional assumption on
the node degrees, if one, as in the clustering algorithm by Ng, Jordan and Weiss
(2001), first renormalizes the rows of U to norm 1, or if one, according to Shi and
Malik (2000), computes eigenvectors of the graph Laplacian I − D−1W instead
of the symmetric Laplacian I − D−1/2WD−1/2.

In a more realistic situation the between-cluster similarity will rarely be exactly
0 and all components of the graph will be connected. Nevertheless, if the clusters
are distinct, we may still use the eigenvalues of the graph Laplacian to determine
the number of significant dimensions. Heuristically, choose the number d of sig-
nificant eigenvectors such that the eigengaps δi = |νi+1 − νi | are small for i < d,

but the eigengap δd is large. One can justify such an approach with an argument
from perturbation analysis [Stewart (1990)]. The idea is that the matrix L for the
genetic data is a perturbed version of the ideal matrix for d disconnected clusters.
If the perturbation is not too large and the “non-null” eigengap δd is large, the
subspace spanned by the first d eigenvectors will be close to the subspace defined
by the ideal indicator vectors and a spectral clustering algorithm will separate the
individual clusters well. The question then becomes: How do we decide whether
an eigengap is significant (non-null)?

In this work we propose a practical scheme for estimating the number of signif-
icant eigenvectors for genetic ancestry that is based on the eigengap heuristic and
hypothesis testing. By simulation, we generate homogeneous data without popu-
lation structure and study the distribution of eigengaps for the normalized graph
Laplacian. Because there is only one population, the first eigengap δ1 is large. We
are interested in the first null eigengap, specifically the difference δ2 = |ν3 − ν2|
between the 2nd and 3rd eigenvalues (note that ν1 is always 0). If the data are ho-
mogeneous, this difference is relatively small. Based on our simulation results, we
approximate the upper bound for the null eigengap with the 99th quantile of the
sampling distribution as a function of the number of subjects n and the number of
SNPs p. In the eigenvector representation, we choose the dimension d according
to

d = max{i; δi > f (n,p)},
where f (n,p) = −0.00016 + 2.7/n + 2.3/p is the empirical expression for the
99th quantile. For most applications, we have that p 
 n and f (n,p) ≈ 2.7/n.

2.4. Controlling for ancestry in association studies. Due to demographic, bio-
logical and random forces, genetic variants differ in allele frequency in populations
around the world. A case-control study could be susceptible to population stratifi-
cation, a form of confounding by ancestry, when such variation is correlated with
other unknown risk factors. Figure 2 shows an example of population stratifica-
tion. We wish to test the association between candidate SNPs and the outcome (Y )
of a disease. In the example, the genotype distributions for Populations 1 and 2
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FIG. 2. Example of population stratification due to both disease prevalence and allele frequencies
varying by ancestry. See text for details.

are different, as illustrated by the different proportions of red, yellow and green.
In addition, there are more cases (Y = 1) from Population 2 than 1, and more
controls (Y = 0) from Population 1 than 2. Let G1 and G2, respectively, be the
genotypes of a causal versus a noncausal SNP. The arrow from G1 to Y in the
graph to the right indicates a causal association. There is no causal association be-
tween G2 and Y , but the two variables are indirectly associated, as indicated by the
dotted line, through ancestry (C). Ancestry is here a “confounder,” as it is both as-
sociated with allele frequency and disease prevalence conditional on genotype; it
distorts the assessment of the direct relationship between G2 and Y and decreases
the power of the study.

Statistical techniques to control spurious findings include stratification by
the Cochran–Mantel–Haenszel method, regression and matching [Rosenbaum
(1995)]. These approaches assume that the key confounding factors have been
identified, and that at each distinct level of the confounders, the observed genotype
is independent of the case and control status. In this work we estimate confound-
ing ancestry by an eigenanalysis (PCA or spectral graph) of a panel of reference
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SNPs. Under the additional assumption that the interaction between ancestry and
the genotype of the candidate SNPs is neglible, we compare different techniques
of controlling for ancestry.

The most straightforward strategy to correct for stratification is to embed the
data using the inferred axes of variation and divide the population into K groups
or strata that are homogeneous with respect to ancestry. The Cochran–Mantel–
Haenszel (CMH) method represents the data as a series of K contingency tables.
One then performs a chi-squared test of the null hypothesis that the disease status
is conditionally independent of the genotype in any given stratum. The precision
in sample estimates of the CMH test statistic is sensitive to the sample size as well
as the balance of the marginals in the contingency table. This can be a problem
if we have insufficient data or if cases and controls are sampled from different
populations.

An alternative approach is to use a regression model for the disease risk as a
function of allele frequency. Effectively, regression models link information from
different strata by smoothness assumptions. Suppose that x is the observed allele
count (0, 1 or 2) of the candidate SNP, and that the eigenmap coordinates of an
individual are given by φ1, . . . , φd . Assign Y = 1 to cases and Y = 0 to controls
and let q = P(Y = 1|x,φ1, . . . , φd). For a logistic regression model

log
(

q

1 − q

)
= βx + b1φ1 + · · · + bdφd,

the regression parameter β can be interpreted as the increase in the log odds of
disease risk per unit increase in x, holding all other risk variables in the model
constant. Thus, the null hypothesis H0 :β = 0 is equivalent to independence of
disease and SNP genotype after adjusting for ancestry.

A third common strategy to control for confounding is to produce a fine-scale
stratification of ancestry by matching. Here we use a matching scheme introduced
in an earlier paper [Luca et al. (2008)]. The starting point is to estimate ances-
try using an eigenanalysis (PCA for “GEM” and the spectral graph approach for
“SpectralGEM”). Cases and controls are matched with respect to the Euclidean
metric in this coordinate system; hence, the relevance of an MDS interpretation
with an explicitly defined metric. Finally, we perform conditional logistic regres-
sion for the matched data.

2.5. Algorithm for SpectralR and SpectralGEM. Algorithm 1 summarizes the
two related avenues that use the spectral graph approach to control for genetic
ancestry: SpectralR (for Regression) and SpectralGEM (for GEnetic Matching).

There are many possible variations of the algorithm. In particular, the normal-
ization and rescaling in Steps 3 and 7 can be adapted to the clustering algorithms
by Shi–Malik and Ng–Jordan–Weiss. One can also redefine the weight matrix in
Step 2 to model different structure in the genetic data.
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ALGORITHM 1 (SpectralR and SpectralGEM).

1: Center and scale the allele counts. Let xi be the genetic information for sub-
ject i.

2: Compute weight matrix W where wij = (max{xi · xj ,0})1/2.
3: Compute the normalized Laplacian matrix L = I − D−1/2WD−1/2.
4: Find the eigenvalues νi and eigenvectors ui of L.
5: Define the PSD matrix H = (I − L)+ with eigenvalues λi = max{0,1 − νi}

and eigenvectors ui . This is the kernel of our map.
6: Determine the number of significant dimensions d in the eigenvector repre-

sentation

d = max{i; δi > −0.00016 + 2.7/n + 2.3/p}.
7: Let �d(i) = (λ

1/2
1 u1(i), . . . , λ

1/2
d ud(i)) be the new representation of sub-

ject i.
8: For regression (SpectralR):
9: Perform logistic regression with the the d eigenmap coordinates and the

allele count of the candidate SNP as covariates.
10: Compute p-values for the Wald test of no association between disease and

SNP genotype.
11: For genetic matching (SpectralGEM):
12: Compute the distance between subjects i and j using ‖�d(i) − �d(j)‖.
13: Find homogeneous clusters of individuals via Ward’s k-means algorithm

[Luca et al. (2008)].
14: Rescale the data as described in the GEM algorithm [Luca et al. (2008)].
15: Remove unmatchable subjects prior to analysis.
16: Recompute the eigenmap. Match cases and controls in d dimensions.
17: Perform conditional logistic regression and compute p-values for the Wald

test.

3. Analysis of data. A large number of subjects participating in multiple
studies throughout the world have been assimilated into a freely available data-
base known as POPRES [Nelson et al. (2008)]. Data consists of genotypes from
a genome-wide 500,000 single-nucleotide polymorphism panel. This project in-
cludes subjects of African American, E. Asian, Asian-Indian, Mexican and Euro-
pean origin. We use these data to assess performance of spectral embeddings. For
more detailed analyses of these data see Lee et al. (2009).

These data are challenging because of the disproportionate representation of
individuals of European ancestry combined with individuals from multiple conti-
nents. To obtain results more in keeping with knowledge about population demo-
graphics, Nelson et al. (2008) supplement POPRES with 207 unrelated subjects
from the four core HapMap samples. In addition, to overcome problems due to the



A SPECTRAL GRAPH APPROACH TO DISCOVERING GENETIC ANCESTRY 191

dominant number of samples of European ancestry, they remove 889 and 175 indi-
viduals from the Swiss and U.K. samples, respectively. Because PCA is sensitive
to outliers, they perform a careful search for outliers, exploring various subsets of
the data iteratively. After making these adjustments, they obtain an excellent de-
scription of the ancestry of those individuals in the remaining sample, detecting
seven informative axes of variation that highlight important features of the genetic
structure of diverse populations. When analysis is restricted to individuals of Euro-
pean ancestry, PCA works very well [Novembre et al. (2008)]. Direct application
of the approach to the full POPRES data leads to much less useful insights, as we
show below.

3.1. Data analysis of POPRES. Demographic records in POPRES include the
individual’s country of origin and that of his/her parents and grandparents. After
quality control, the data included 2955 individuals of European ancestry and 346
African Americans, 49 E. Asians, 329 Asian-Indians and 82 Mexicans. From a
sample of nearly 500,000 SNPs we focus on 21,743 SNPs for in depth analy-
sis. These SNPs were chosen because they are not rare (minor allele frequency
≥ 0.05), and have a low missingness rate (≤ 0.01). Each pair is separated by at
least 10 KB with squared correlation of 0.04 or less.

Outlier dataset. It is well known that outliers can interfere with discovery of
the key eigenvectors and increase the number of significant dimensions discov-
ered with PCA. To illustrate the effect of outliers, we created a subsample from
POPRES including 580 Europeans (all self-identified Italian and British subjects),
1 African American, 1 E. Asian, 1 Indian and 1 Mexican. Smartpca removes the 4
outliers prior to analysis and discovers 2 significant dimensions of ancestry. If the
outliers are retained, 5 dimensions are significant. The first two eigenvectors sep-
arate the Italian and British samples and highlight normal variability within these
samples. Ancestry vectors 3–5 isolate the outliers from the majority of the data,
but otherwise convey little information concerning ancestry.

With SpectralGEM, leaving the outliers in the data has no impact. The method
identified 2 significant dimensions that are nearly identical to those discovered
by PCA. In our cluster analysis we identified 4 homogeneous clusters: 1 British
cluster, 2 Italian clusters and 1 small cluster that includes the outliers and 6 unusual
subjects from the remaining sample.

Cluster dataset. The ancestral composition of samples for genome-wide as-
sociation studies can be highly variable. To mimic a typical situation, we created
a subsample from POPRES including 832 Europeans (all self-identified British,
Italian, Spanish and Portuguese subjects), 100 African Americans and 100 Asian-
Indians.

Using smartpca, 7 dimensions of ancestry are significant. The first 2 eigenvec-
tors separate the continental samples. The third and fourth eigenvectors separate
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FIG. 3. Principal components 3–6 for data from the Cluster Dataset. PC 1 and PC 2 are quite
similar to the eigenvectors shown in Figure 4. Subjects are self-identified as U.K. (black), Italian
(red), Iberian Peninsula (green), African American (blue) and Indian (orange).

the Europeans roughly into three domains (Figure 3). The three European pop-
ulations form three clusters, but they are not completely delineated. The other
continental groups generate considerable noise near the center of the plot. The
remaining 3 significant dimensions reveal little structure of interest.

Using SpectralGEM, 4 dimensions are significant (Figure 4). The first two di-
mensions separate the continental clusters. In the third and fourth dimensions, the
European clusters separate more distinctly than they did for PCA. For these higher
dimensions, the samples from other continents plot near to the origin, creating a

FIG. 4. Nontrivial eigenvectors (EV) from the spectral graph approach for the Cluster Dataset.
Subjects are self-identified as U.K. (black), Italian (red), Iberian Peninsula (green), African American
(blue) and Indian (orange).



A SPECTRAL GRAPH APPROACH TO DISCOVERING GENETIC ANCESTRY 193

cleaner picture of ancestry. Six homogeneous clusters are discovered, 3 European
clusters, an African American cluster and 2 Indian clusters.

Full dataset. For the greatest challenge we analyze the full POPRES sam-
ple. Smartpca’s 6 standard deviation outlier rule removes 141 outliers, including
all of the E. Asian and Mexican samples. If these “outliers” were retained, PCA
finds 12 significant dimensions: the first 4 dimensions separate the 5 continental
populations (African, European, Latin American, E. Asian and S. Asian). Other
eigenvectors are difficult to interpret. Moreover, based on this embedding, Ward’s
clustering algorithm failed to converge; thus, no sensible clustering by ancestry
could be obtained.

With SpectralGEM no outliers are removed prior to analysis. The number of
significant dimensions of ancestry is 8. The first 4 dimensions separate the major
continental samples; the remaining dimensions separate the European sample into
smaller homogeneous clusters.

Applying the clustering algorithm based on this eight dimensional embedding,
we discover 16 clusters and 3 outliers. Four of these clusters group the African
American, E. Asian, Indian and Mexican samples, so that greater than 99% of the
subjects in a cluster self-identified as that ancestry, and only a handful of subjects
who self-identified as one of those four ancestries fall outside of the appropriate
cluster.

The remaining 12 clusters separate the individuals of European ancestry. For
ease of interpretation, we removed the samples obtained from Australia, Canada
and the U.S., and focus our validation on 2302 European samples, which can be
more successfully categorized by ancestry based on geographic origin. These in-
dividuals were classified to one of the 34 European countries represented in the
database (Table 1). Sample sizes varied greatly across countries. Seven countries
had samples of size 60 or more. Countries with smaller samples were combined to
create composite country groupings based on region; see Table 1 for definition of
country groupings.

By using Ward’s clustering algorithm based on the spectral embedding, all but
81 of the European sample were clustered into one of 8 relatively large European
clusters (labeled A-H, Table 1). Figure 5 illustrates the conditional probability of
country grouping given cluster. Clusters tend to consist of individuals sampled
from a common ancestry. Labeling the resulting clusters in Figure 5 by the primary
source of their membership highlights the results: (A) Swiss, (B) British Isles, (C)
Iberian Peninsula, (D) Italian A, (E) Central, (F) Italian B, (G) North East and
(H) South East. The remaining four small clusters show a diversity of membership
and are simply labeled I, J, K and L. Cluster L has only 7 members who could be
classified by European country of origin.

A dendrogram displays the relationships between clusters (Figure 6). For in-
stance, it appears that the Italian A and B clusters represent Southern and Northern
Italy, respectively. Clusters I and J are similar to the Central cluster, while Cluster
K represents a more Southern ancestry.
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TABLE 1
Counts of subjects from each country classified to each cluster

Cluster label
Country Subset Count A B C D E F G H I J K L

Switzerland CHE 1014 871 36 3 2 32 39 1 0 9 14 5 2
England GBR 26 0 22 0 0 1 0 0 0 1 0 2 0
Scotland GBR 5 0 5 0 0 0 0 0 0 0 0 0 0
U.K. GBR 344 20 300 0 3 8 0 3 0 1 1 5 1
Italy ITA 205 8 0 1 124 1 60 0 4 1 2 4 0
Spain ESP 128 3 0 122 0 1 1 0 0 0 0 1 0
Portugal PRT 124 1 0 119 0 0 2 0 0 0 0 0 0
France FRA 108 39 34 15 0 5 6 0 0 3 2 3 1
Ireland IRL 61 0 61 0 0 0 0 0 0 0 0 0 0
Belgium NWE 45 21 19 0 0 3 0 0 0 1 1 0 0
Denmark NWE 1 0 1 0 0 0 0 0 0 0 0 0 0
Finland NWE 1 0 0 0 0 0 0 1 0 0 0 0 0
Germany NWE 71 16 22 0 0 22 1 3 0 3 0 2 2
Latvia NWE 1 0 0 0 0 0 0 1 0 0 0 0 0
Luxembourg NWE 1 0 0 0 0 1 0 0 0 0 0 0 0
Netherlands NWE 19 3 15 0 0 1 0 0 0 0 0 0 0
Norway NWE 2 0 2 0 0 0 0 0 0 0 0 0 0
Poland NWE 21 0 1 0 0 3 0 16 0 1 0 0 0
Sweden NWE 10 0 7 0 0 2 0 0 0 0 1 0 0
Austria ECE 13 3 1 0 0 6 0 0 0 2 0 0 1
Croatia ECE 8 0 0 0 0 5 0 2 1 0 0 0 0
Czech ECE 10 1 0 0 0 6 0 3 0 0 0 0 0
Hungary ECE 18 0 0 0 0 10 0 4 1 2 1 0 0
Romania ECE 13 0 0 0 0 5 0 2 4 1 1 0 0
Russia ECE 7 1 0 0 0 0 0 6 0 0 0 0 0
Serbia ECE 3 0 0 0 0 0 0 1 0 2 0 0 0
Slovenia ECE 2 0 0 0 0 2 0 0 0 0 0 0 0
Ukraine ECE 1 1 0 0 0 0 0 0 0 0 0 0 0
Albania SEE 2 0 0 0 1 0 0 0 1 0 0 0 0
Bosnia SEE 7 0 0 0 0 3 0 4 0 0 0 0 0
Cyprus SEE 4 0 0 0 4 0 0 0 0 0 0 0 0
Greece SEE 5 0 0 0 2 0 0 0 3 0 0 0 0
Kosovo SEE 1 0 0 0 0 0 0 0 1 0 0 0 0
Macedonia SEE 3 0 0 0 0 0 1 0 2 0 0 0 0
Turkey SEE 6 0 0 0 2 0 0 0 3 0 0 0 0
Yugoslavia SEE 17 0 0 0 1 6 0 2 6 0 2 0 0

Total 2302 988 526 260 139 123 110 49 26 27 25 22 7

Note: Labels in column two create country groupings where necessary due to small counts of subjects
in many individual countries. Country groupings NWE, ECE and SEE include countries from north
west, east central and south east Europe, respectively. Eight clusters (A–H) were given descriptive
cluster labels based on the majority country or country grouping membership: (A) Swiss, (B) British
Isles, (C) Iberian Peninsula, (D) Italian A, (E) Central, (F) Italian B, (G) North East and (H) South
East. The remaining 4 clusters are labeled I, J, K and L.

3.2. Simulations for association. To compare smartpca with SpectralGEM
and SpectralR using the POPRES data, it is necessary to create cases (Y = 1)
and controls (Y = 0) from this undifferentiated sample. Disease prevalence of-
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FIG. 5. Country membership by cluster for the Full Dataset. Cluster labels and country groupings
are defined in Table 1. Cluster labels were derived from the majority country or country grouping
membership.
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FIG. 6. Dendrogram for European clusters from the Full Dataset.

ten varies by ancestry due to genetic, environmental and cultural differences. To
simulate a realistic case-control sample, we wish to mimic this feature. We use
cluster membership, C = k, k = 1, . . . ,K , as a proxy for ancestry and assign cases
differentially to clusters. In our previous analysis we identified 16 clusters, 12 of
European ancestry and 4 of non-European ancestry. For simplicity, we reduce the
number of European clusters to 8 using the dendrogram and Table 1 to help group
the small clusters: K with D, and I, J and L with E.

To generate an association between Y and C, we vary P(Y = 1|C = k) by
cluster. Within each cluster, case and control status is assigned at random. This
creates a relationship between Y and the observed SNPs that is purely spurious.
Thus, we can assess the Type I error rate of smartpca and SpectralGEM to evaluate
the efficacy of the two approaches in removing confounding effects induced by
ancestry.

To assess power, we must generate SNPs associated with Y using a proba-
bility model. To maintain as close a correspondence with the observed data as
possible, we simulate each causal SNP using the baseline allele frequencies, pk ,
k = 1, . . . ,12, obtained from a randomly chosen SNP in the data base. For clus-
ter k, when the individual is a control the simulated genotype is 0, 1 or 2 with
probabilities (1 − pk)

2,2pk(1 − pk) or p2
k , respectively. The association is in-

duced by imposing relative risk R > 1 which corresponds with the minor allele at
a simulated causal locus. Case individuals are assigned genotype 0, 1 and 2 with
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probabilities proportional to (1 − pk)
2,2Rpk(1 − pk) and R2p2

k , respectively. We
repeat this process to generate M = 1000 SNPs associated with Y .

We wish to compare two approaches for estimating ancestry (PCA and spec-
tral graph) and two approaches for controlling ancestry (regression and match-
ing). Luca et al. (2008) conducted a thorough comparison between regression and
matching using eigenvectors derived from PCA. Here we focus on two key com-
parisons: (i) we control confounding using regression and compare the efficacy
of eigenvectors estimated using PCA versus the spectral graph approach (Smart-
pca versus SpectralR); and (ii) we estimate eigenvectors using the spectral graph
approach and compare efficacy of matching versus the regression approach (Spec-
tralGEM versus SpectralR). Finally, we compare all of these methods to the CMH
approach which uses the clusters as strata.

We perform the following experiment: randomly sample half of the POPRES
data; assign case and control status differentially in clusters according the model
P(Y |C); estimate the eigenvectors using the two approaches based on the p ob-
served SNPs; assess Type I error using the observed SNPs; generate M causal
SNPs; assess power using the simulated SNPs. From our previous analysis we
know that all of the samples of Indian and Mexican ancestry are declared outliers
using the 6 sd rule for outliers. Most practitioners, however, would not discard en-
tire clusters of data. Thus, we do not remove outliers in the simulation experiment.

We simulate a disease with differential sampling of cases from each cluster to
induce spurious association between Y and the observed genotypes. This experi-
ment is repeated for 5 scenarios (Table 2). In Scenario 1, P(Y = 1|C = k) varies
strongly by continent, but is approximately constant within Europe. In Scenarios 2

TABLE 2
Conditional probability an individual is labeled a cases, given ancestry. Spurious association

between alleles and case/control status is generated by choosing a value other than 0.5

P(case|cluster)

Cluster name P(cluster) Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

African-American 0.13 0.33 0.48 0.26 0.25 0.33
Asian Indian 0.13 0.67 0.49 0.27 0.2 0.67
Mexican 0.03 0.2 0.51 0.27 0.34 0.2
Asian 0.02 0.8 0.51 0.26 0.51 0.8
Swiss 0.3 0.5 0.6 0.65 0.62 0.6
British Isles 0.17 0.5 0.8 0.9 0.9 0.85
Iberian Peninsula 0.07 0.51 0.05 0.2 0.45 0
Italian A 0.05 0.5 0.05 0.15 0.1 0
Central European 0.04 0.5 0.39 0.39 0.39 0.2
Italian B 0.04 0.51 0.21 0.6 0.6 0.41
North East European 0.01 0.5 0.21 0.46 0.39 0.21
South East European 0.01 0.62 0.29 0.24 0.19 0
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and 3, the tables are reversed, with the variability most exaggerated within Europe.
This could occur in practice due to differential efforts to recruit cases in different
regions. In Scenarios 3 and 4, P(Y = 1|C = k) approximately follows a gradi-
ent across Europe with high prevalence in northern Europe and low prevalence in
southern Europe. In Scenario 5, P(Y = 1|C) = 0 for three of the small clusters to
simulate a situation where some controls were included for convenience, but no
cases of corresponding ancestry were included in the study.

All four approaches controlled rates of spurious association fairly well com-
pared to a standard test of association (Table 3). Overall, matching is slightly more

TABLE 3
Type I error

0.05 0.01 0.005

Scenario 1
No correction 0.1708 0.0701 0.0477
Smartpca 0.0494 0.0095 0.0049
SpectralR 0.0522 0.0104 0.0052
SpectralGEM 0.0486 0.0091 0.0044
CMH 0.0441 0.0083 0.0041

Scenario 2
No correction 0.0774 0.0198 0.0112
Smartpca 0.0524 0.0102 0.0051
SpectralR 0.0519 0.0102 0.0050
SpectralGEM 0.0505 0.0096 0.0047
CMH 0.0446 0.0087 0.0042

Scenario 3
No correction 0.4305 0.2949 0.2507
Smartpca 0.0514 0.0103 0.0049
SpectralR 0.0511 0.0097 0.0051
SpectralGEM 0.0491 0.0096 0.0046
CMH 0.0438 0.0084 0.0040

Scenario 4
No correction 0.4353 0.2998 0.2564
Smartpca 0.0517 0.0104 0.0051
SpectralR 0.0507 0.0101 0.0052
SpectralGEM 0.0497 0.0097 0.0049
CMH 0.0444 0.0086 0.0044

Scenario 5
No correction 0.2170 0.1015 0.0734
Smartpca 0.0528 0.0107 0.0053
SpectralR 0.0524 0.0103 0.0051
SpectralGEM 0.0502 0.0096 0.0046
CMH 0.0434 0.0084 0.0042
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TABLE 4
Power

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

No correction 0.817 0.832 0.769 0.766 0.815
Smartpca 0.829 0.808 0.785 0.784 0.798
SpectralR 0.832 0.804 0.780 0.782 0.790
SpectralGEM 0.816 0.775 0.757 0.754 0.764
CMH 0.818 0.751 0.741 0.745 0.717

conservative than regression (Table 3). For Scenarios 1–4, this leads to a slight ex-
cess of control of Type I errors. For Scenario 5, the advantages of matching come
to the fore. When regions of the space have either no cases or no controls, the re-
gression approach is essentially extrapolating beyond the range of the data. This
leads to an excess of false positives that can be much more dramatic than shown in
this simulation in practice [Luca et al. (2008)]. The matching approach has to have
a minimum of one case and one control per strata, hence, it downweights samples
that are isolated by pulling them into the closest available strata.

For each scenario the number of significant eigenvectors was 6 or 7 using the
spectral graph approach. With PCA the number of dimensions was 16 or 17, that
is, the method overestimates the number of important axes of variation. With re-
spect to power, however, there is no penalty for using too many dimensions since
the axes are orthogonal. This may explain why the power of smartpca was either
equivalent or slightly higher than the power of SpectralR in our simulations (Ta-
ble 4). Because matching tends to be conservative, it was also not surprising to
find that the power of SpectralR was greater than SpectralGEM. Finally, all of
these approaches exhibited greater power than the CMH test, suggesting that con-
trol of ancestry is best done at the fine scale level of strata formed by matching
cases and controls than by conditioning on the largest homogeneous strata as is
done in the CMH test.

4. Discussion. Mapping human genetic variation has long been a topic of
keen interest. Cavalli-Sforza, Menozzi and Piazza (1994) assimilated data from
populations sampled worldwide. From this they created PC maps displaying vari-
ation in allele frequencies that dovetailed with existing theories about migration
patterns, spread of innovations such as agriculture, and selective sweeps of benefi-
cial mutations. Human genetic diversity is also crucial in determining the genetic
basis of complex disease; individuals are measured at large numbers of genetic
variants across the genome as part of the effort to discover the variants that in-
crease liability to complex diseases. Large, genetically heterogeneous datasets are
routinely analyzed for genome-wide association studies. These samples exhibit
complex structure that can lead to spurious associations if differential ancestry is
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not modeled [Lander and Schork (1994), Pritchard et al. (2000b), Devlin, Roeder
and Wasserman (2001)].

While often successful in modeling the structure in data, PCA has some notable
weaknesses, as illustrated in our exploration of POPRES [Nelson et al. (2008)].
In many settings the proposed spectral graph approach is more robust and flexible
than PCA. Moreover, finding the hidden structure in human populations using a
small number of eigenvectors is inherently appealing.

A theory for the eigenvalue distribution of Laplacian matrices, analogous to
the Tracy–Widom distribution for covariance matrices, is, however, not yet avail-
able in the literature. Most of the current results concern upper and lower bounds
for the eigenvalues of the Laplacian [Chung (1997)], the distribution of all eigen-
values of the matrix as a whole for random graphs with given expected degrees
[Chung, Lu and Vu (2003)], and rates of convergence and distributional limit theo-
rems for the difference between the spectra of the random graph Laplacian Hn and
its limit H [Koltchinskii and Giné (2000), Shawe-Taylor, Cristianini and Kandola
(2002), Shawe-Taylor et al. (2005)]. At present, we rely on simulations of homo-
geneous populations in our work to derive an approximation to the distribution of
the key eigengap.

Furthermore, the weight matrix for the spectral graph implemented here was
motivated by two features: it is quite similar to the PCA kernel used for ances-
try analysis in genetics; and it does not require a tuning parameter. Nevertheless,
we expect that a local kernel with a tuning parameter could work better. Because
the features (SNPs) take on only 3 values, corresponding to three genotypes, the
usual Gaussian kernel is not immediately applicable. To circumvent this difficulty,
a natural choice that exploits the discrete nature of the data to advantage is based
on “IBS sharing.” For individuals i and j , let sij be the fraction of alleles shared
by the pair identical by state across the panel of SNPs [Weir (1996)]. Define the
corresponding weight as wij = exp{−(1 − sij )

2/σ 2}, with tuning parameter σ 2.
Preliminary investigations suggest that this kernel can discover the hierarchical
clustering structure often found in human populations, such as major continen-
tal clusters, each made up of subclusters. Further study is required to develop a
data-dependent choice of the tuning parameter.
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