[1:

Apprentissage ECG 20252026

December 23, 2025

1 Classification des ECG de la base de données PTB-XL

Ce devoir repose sur le jeu de données PTB-XL disponible ici. Il est indispenable de télécharger le

jeu de données (~ 3Go) et le renommer ptbxl.

L’objectif de ce travail est d’entrainer un modele de classification d’ECG en 5 classes décrites au

milieu de la section Data Description de la pageweb du jeu de données.

« NORM Normal ECG

o MI Myocardial Infarction

e STTC ST/T Change

e CD Conduction Disturbance
e HYP Hypertrophy

Un ecg est composé de 12 dérivations (ou leads en anglais) échantillonnés a une fréquence 100hz
(ou 500 hz dans le jeu de données) sur 10 secondes. Nous avons donc 12 dérivations de taille 1000

pour chaque ECG.

1.1 Chargement des librairies

Nous allons avoir besoin des librairies suivantes a installer si elles ne le sont pas.

import
import
import
import
import

0s

numpy as np

pandas as pd
matplotlib.pyplot as plt
widb

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, MultilabelBinarizer
from sklearn.metrics import classification_report, confusion_matrix,

~roc_auc_score

import

seaborn as sns

Deep Learning tmports

import
import
import

torch
torch.nn as nn
torch.optim as optim

from torch.utils.data import Dataset, Dataloader

try:

https://physionet.org/content/ptb-xl/1.0.3/

[1:

from iterstrat.ml_stratifiers import MultilabelStratifiedShuffleSplit
STRATIFIED_AVAILABLE = True
except ImportError:
print("Attention: iterative-stratification n'est pas installé. Utilisation,
od'un regular split.")
print("Installer avec: pip install iterative-stratification")
STRATIFIED_AVAILABLE = False

1.2 Fonction de chargement des données

Afin de se consacrer pleinement & la mise en place du modele d’apprentissage, la fonction suivante
permet de charger les données a partir du répertoire ptbxl.

def load_ptbxl_data(data_path='ptbxl/', sampling_rate=100):

chargement dataset PTB-XL
Args:

data_path: chemin vers le dosster PTB-XL

sampling_rate: frequence d'echantillonnage 100 or 500 Hz
Returns:

X: ECG signals, Y: labels, metadata
Load metadata
metadata_file = os.path.join(data_path, 'ptbxl_database.csv')
print (metadata_file)
Y = pd.read_csv(metadata_file, index_col='ecg_id')
Y.scp_codes = Y.scp_codes.apply(lambda x: eval(x))

Load signals
if sampling_rate == 100:
data_folder = os.path.join(data_path, 'recordsl100')
else:
data_folder

os.path.join(data_path, 'records500')

X =1

valid_indices = []

print ("Chargement des ECG ...")
for idx, row in Y.iterrows():
file_path = os.path.join(data_path, row.filename_lr if sampling_rate ==
100 else row.filename_ hr)
try:
signal, _ = wfdb.rdsamp(file_path)
X.append(signal)
valid_indices.append(idx)
except Exception as e:
print (f"Error loading {file_pathl}: {el}")

[]:

[1:

[]:

continue

X
Y

np.array (X)
Y.loc[valid_indices]

print (f"chargés {len(X)} enregistrements ECG")
print (f"Dimensions du signal (ecg, temps, derivation): {X.shapel}") #,
< (num_samples, time_steps, num_leads)

return X, Y

1.3 Déclaration de variables globales

Calcul sur GPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print (£"Using device: {devicel}")

Afficher les infos GPU st disponibles
if torch.cuda.is_available():
print (f"GPU Name: {torch.cuda.get_device_name(0)}")
print (f"GPU Count: {torch.cuda.device_count()}")
print (f"CUDA Version: {torch.version.cuda}")
Enable cuDNN auto-tuner for better performance
torch.backends.cudnn.benchmark = True
else:
print(" Attention: CUDA n'est pas disponible. Entrainement lent sur CPU.")
print("Installer CUDA-enabled PyTorch avec pip et la bonne version de cuda")

Quelques wvariables globales

DATA_PATH = 'ptbxl/'

SAMPLING_RATE = 100 # Hz

BATCH_SIZE = 32 # 4 augmenter st la mémoire GPU le permet

NUM_EPOCHS = 50

LEARNING_RATE = 0.001

MIN_SAMPLES_PER_CLASS = 50 # Minimum d'ecg a avotir dans une classe donnée

1.4 Chargement des données

print(”\n" + "=II*100)
X, Y = load_ptbxl_data(DATA_PATH, SAMPLING_RATE)

1.5 Fonction de traitement des étiquettes

def preprocess_labels(Y, data_path='./ptbxl/', target_classes=['NORM', 'MI',
<'STTC', 'CD', 'HYP'], min_samples=50):

nimnn

Eztration et traitement des etiquettes de diagnostic avec un filtrage,
—automatique
Args:
Y: dataframe des metatdata
data_path: chemin vers le dossier PTB-XL (pour le fichier,
~scp_statements.csv)
target_classes: liste des classes de diagnostic a prédire par le modéle,
~de classification
min_samples: mombre minimal d'ecg par classe (pour considérer la classe)
Returns:
Binary labels for classification, filtered class names,
~MultiLabelBinarizer
Load SCP statements to get superclass mappings
scp_statements_file = os.path.join(data_path, 'scp_statements.csv')
if os.path.exists(scp_statements_file):
scp_statements = pd.read_csv(scp_statements_file, index_col=0)
scp_statements = scp_statements[scp_statements.diagnostic == 1]

def aggregate_diagnostic(scp_codes):

"""Aggregation des codes SCP dans des classes de diagnostics”"""

labels = []

for key in scp_codes.keys(Q):

if key in scp_statements.index:
superclass = scp_statements.loc[key].diagnostic_class
if superclass in target_classes:
labels.append(superclass)
return list(set(labels)) # Remove duplicates

Y['diagnostic_labels'] = Y.scp_codes.apply(aggregate_diagnostic)
else:
print (f"Warning: {scp_statements_file} not found. Using direct SCP code,
omatching.")

def extract_labels(scp_codes, target_classes):

labels = []

for tc in target_classes:

if tc in scp_codes:
labels.append(tc)
return labels

Y['diagnostic_labels'] = Y.scp_codes.apply(lambda x: extract_labels(x,
~target_classes))

Convert to binary format
mlb = MultilabelBinarizer(classes=target_classes)
y_binary = mlb.fit_transform(Y['diagnostic_labels'])

[1:

print (f"\n=== Distribution initiales des classes ===")

for i, label in enumerate(target_classes):
count = y_binary[:, i].sum()
percentage = (count / len(y_binary)) * 100
print(f"{label}: {count} samples ({percentage:.2f}%)")

Filter out classes with too few samples
valid_classes = []
valid_indices = []

for i, label in enumerate(target_classes):

count = y_binary[:, i].sum()

if count >= min_samples:
valid_classes.append(label)
valid_indices.append (i)

else:
print (f" Warning: {label} has only {count} samples (<

o{min_samples}). Excluding from training.")

if len(valid_classes) ==
raise ValueError(f"No classes have at least {min_samples} samples. Try,
~lowering min_samples parameter.")

Keep only walid classes
y_binary_filtered = y_binary[:, valid_indices]

print (f"\n=== Les classes retenues ({len(valid_classes)} classes) ===")
for i, label in enumerate(valid_classes):
count = y_binary_filtered[:, i].sum()
percentage = (count / len(y_binary_filtered)) * 100
print(£"{label}: {count} samples ({percentage:.2f}%)")

return y_binary_filtered, valid_classes, mlb

1.6 Filtrage et traitement automatique des étiquettes (classes)

print("\n" + "="%100)

print ("Traitement des étiquettes")

print ("="%100)

initial_target_classes = ['NORM', 'MI', 'STTC', 'CD', 'HYP']

y_binary, target_classes, mlb = preprocess_labels(Y, DATA_PATH,
~initial_target_classes, MIN_SAMPLES_PER_CLASS)

if len(target_classes) ==
print ("\n ERREUR: Pas de classes avec un nombre suffisant 4'ECG!")

print (£"Try lowering MIN_SAMPLES_PER_CLASS (currently
~{MIN_SAMPLES PER_CLASSH)")
exit (1)

1.7 Fonction pour stratification apprentissage-validation-test

[1: def stratified_split(X, y, test_size=0.3, random_state=42):

nimnn

partage stratifié pour des données multi-étiquettes
if STRATIFIED_AVAILABLE and y.shape[l] > 1:
print("stratified split for multi-label data...")
msss = MultilabelStratifiedShuffleSplit(n_splits=1,,
~test_size=test_size, random_state=random state)

for train_idx, test_idx in msss.split(X, y):
X_train, X_test = X[train_idx], X[test_idx]
y_train, y_test = yl[train_idx], yl[test_idx]

return X_train, X_test, y_train, y_test
else:
print("regular stratified split...")
stratify_labels = y.argmax(axis=1) if y.shape[l] > 1 else y.ravel()
return train_test_split(X, y, test_size=test_size,,
~random_state=random_state, stratify=stratify_labels)

1.8 Création d’une partition avec stratification

[1: print("\n" + "="%x100)
print("Partition avec stratification")
print ("="%60)
First split: train vs temp (val+test)
X_train, X_temp, y_train, y_temp = stratified_split(X, y_binary, test_size=0.3,,
«~random_state=42)

Second split: val vs test
X_val, X_test, y_val, y_test = stratified_split(X_temp, y_temp, test_size=0.5,,
«~random_state=42)

print (f"Ensemble d'apprentissage: {len(X_train)} données")
print (f"Ensemble de validation: {len(X_val)} données")
print (f"Ensemble de test: {len(X_test)} données")

[]1:

[1:

[1:

1.9 Vérification des effectifs des classes dans les trois jeux données

print ("\n=== Effectifs des classes ===")
for i, class_name in enumerate(target_classes):
train_count = y_train[:, i].sum()
val_count = y_val[:, i].sum()
test_count = y_test[:, i].sum()
print (f"{class_name}: Train={train_countl}, Val={val_count},
~Test={test_countl}")

1.10 Partie 1. Standarisation des ECG

Ecrire une fonction normalize__ecg qui prend en entrée les trois ensemble d’ecg X__train, X_ val
et X__test et qui les standarise et qui renvoie les trois jeux de données standardisés ainsi que le
objet généré 'instanciation de la classe StandardScaler(). Pour cela, nous allons avoir besoin de

o Instancier un objet StandardScaler()

e Regrouper dans X__train_ reshaped tous les signaux par dérivation a ’aide de la méthode
.rechape() du jeu de données X__train

o Appliquer la méthode .fit de 'objet scaler sur le jeu de données X__train_ reshaped pour
les calculer les moyennes et les écarts types par dérivation.

o Appeler la méthode .transform sur les jeux de données X_ train, X_ val et X_ test et
renvoyer les versions standardisées.

1.11 Une classe utilitaire pour créer des tenseurs PyTorch

class ECGDataset(Dataset):
def __init__(self, signals, labels):
self.signals = torch.FloatTensor(signals)
self.labels = torch.FloatTensor(labels)

def __len__(self):
return len(self.signals)

def __getitem__(self, idx):
return self.signals([idx], self.labels[idx]

1.12 Création des trois itérateurs sur les jeux de données apprentissage, vali-
dation et test

train_dataset = ECGDataset(X_train, y_train)
val_dataset = ECGDataset(X_val, y_val)
test_dataset = ECGDataset(X_test, y_test)

train_loader = Dataloader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
val_loader = Dataloader(val_dataset, batch_size=BATCH_SIZE)
test_loader = Dataloader(test_dataset, batch_size=BATCH_SIZE)

[]1:

[]1:

1.13 Fonction pour tracer un ECG

Comme pour la lecture du jeu de données, cette fonction permet de tracer les 12 leads d'un ECG
avant ou apres standardisation.

def plot_ecg_sample(signal, title="ECG Signal"):

nimnn

Courbes des 12 dérivation d'un ECG
lead_names = ['I', 'II', 'III', 'aVR', 'aVL', 'aVF', 'Vi', 'v2', 'V3',
<'v4a', 'vs5', 'V6'l]

fig, axes = plt.subplots(12, 1, figsize=(15, 12))
fig.suptitle(title, fontsize=16)

for i in range(12):
axes[i] .plot(signall[:, i], linewidth=0.5)
axes[i] .set_ylabel(lead_names[i])
axes[i] .grid(True, alpha=0.3)
if i < 11:
axes[i].set_xticks([])

axes[-1] .set_xlabel('temps (données)')
plt.tight_layout ()
plt.show()

pour faire un test
plot_ecg_sample(X_train[0], "Un exemple d'ECG - 12 leads")

1.14 Partie 2. Création d’un modéle CNN_LSTM :

Cette question traite la partie centrale du devoir qui consiste a déclarer un réseau de neurones avec
des couches convolutives, une couche LSTM pour le traitement de ’aspect temporel ainsi qu’une
couche dense pour la classification. Pour plus de détails sur le fonctionnement d’une couche LSTM
(vous pouvez lire la partie 10.1 du livre d21. Compléter la déclaration de la classe suivante.

1.14.1 Quelques directives

e Compléter uniquement les lignes précédée d'un ##.

e Les filtres de convolution ne sont pas en dimension 2 comme pour les images.

o Identifier I'’équivalent d’un canal d’une image dans le cas d’'un ECG.

o Faire attention a la fonction d’activation de la couche de sortie pour une classification multi-
labels.

class CNN_LSTM(nn.Module) :

nimnn

Architecture de type CNN-LSTM

nimnn

def __init__(self, num_classes=5, num_leads=12):

d2l.ai

super (CNN_LSTM, self).__init__Q

Couches CNN pour l'extraction d'information (feature)
self.convl = ## Une premiére couche convolutive avec le bon nombre de,
wcanaur composée d'un nmombre de filtres
(entre 50 et 80) avec une taille de filtre (entre 5 ety
10) et un padding (entre 2 et 5)

self.bnl = ## Une couche de batch normalisation de avec la dimension
wappropriée
self.pooll = ## Une couche de maxz pooling d'une fenétre de taille 2.

self.conv2 ## Une seconde couche convolutive en doublant le mombre de,
»filtres par rapport a la précédente.
Une taille de filtre inférieure d la précédente et uny

wpadding de 2.

self.bn2 = ## Une couche de batch normalisation de avec la dimension,
wappropriée

self.pool2 = ## Une couche de maxz pooling d'une fenétre de taille 2.

Couche LSTM pour modéliser la dimension temporelle
self.lstm = ## Une couche LSTM bidirectionnelle (nn.LSTM) avec un,
—nombre d'états cachés égal d la dimension de son entrée,
batch_first = True

Les couches de classification
self.fcl = ## Une couche linéairTe avec un nombre neurones égal au,
~nombre d'états cachés de la couche LSTM.

(Attention au nombre d'entrées)
self .dropout = ## Une couche de dropout da 50/
self.fc2 = ## Une couche linéaire de sortie avec le bon nombre,
~d'unités
self.relu = ## Une fonction d'activation ReLU.
déclaration de fonction pass—-avant du réseau de neurones

def forward(self, x):
x shape: (batch, time_steps, leads) en entrée.

[]:

X = ## Utiliser une permutation pour avoir les derivations en seconde
~dimension.

x = self.relu(self.bnl(self.convl(x)))
x = self.pooll(x)

x = self.relu(self.bn2(self.conv2(x)))
x = self.pool2(x)

x = ## Utiliser une permutation pour remettre la dimension temporelle
~en seconde position

x, _ = self.lstm(x)

X = ## Récupérer uniquement la derniére composante temporelle
x = self.relu(self.fcl(x))

x = self.dropout(x)

x = self.fc2(x)

return ## choisir et appliquer a = la bonne fonction d'activation,
wappropriée & la sortie du Téseau de neurones

1.15 Partie 3. Entrainement du modéle

Compléter les deux bouts de code manquants au début de la fonction suivante.

def train_model(model, train_loader, val_loader, num_epochs=50, 1lr=0.001,,
~device='cuda', model_name='best_ecg_model'):

nimnn

Entrainement du modéle

criterion = ## Choisir la bonne fonction de perte pour le probléme de,
wclasstification traité ice.

optimizer = ## Utiliser un algorithme d'optimisation de type Adam

scheduler = optim.lr_scheduler.ReducelLROnPlateau(optimizer, mode='min',
~patience=5)

train_losses = []

val_losses = []
best_val loss = float('inf')

for epoch in range(num_epochs):
Training

10

model.train()
train_loss = 0O
for signals, labels in train_loader:
signals, labels = signals.to(device), labels.to(device)

optimizer.zero_grad()

outputs = model(signals)

loss = criterion(outputs, labels)
loss.backward()

optimizer.step()

train_loss += loss.item()

train_loss /= len(train_loader)
train_losses.append(train_loss)

Validation

model .eval()

val_loss = 0

with torch.no_grad():

for signals, labels in val_loader:

signals, labels = signals.to(device), labels.to(device)
outputs = model(signals)
loss = criterion(outputs, labels)
val_loss += loss.item()

val_loss /= len(val_loader)
val_losses.append(val_loss)

scheduler.step(val_loss)

print(£f"Cycle {epoch+1}/{num_epochs} - Train Loss: {train_loss:.4f},
~Val Loss: {val_loss:.4f}")

Enregistrer le meilleur modéle

if val_loss < best_val_loss:
best_val_loss = val_loss
S'assurer que le répertoire existe et enregistrer
model _dir = os.path.join('results', 'models')
os.makedirs(model_dir, exist_ok=True)
model_path = os.path.join(model_dir, f'"{model_namel}.pth")
torch.save(model.state_dict(), model_path)

return train_losses, val_losses

11

1.16 Quelques fonctions utilitaires

Les fonctions suivantes permettent d’évaluer, tracer les résultats de test d’un modele de classification
des ecg.

def evaluate_model(model, test_loader, target_classes, device='cuda'):

mnimnn

Evaluation des performances d'un modéle
mnimn
model.eval ()
all_preds = []
all_labels = []

with torch.no_grad():
for signals, labels in test_loader:
signals = signals.to(device)
outputs = model(signals)
all_preds.append(outputs.cpu() .numpy())
all_labels.append(labels.numpy())

all_preds = np.vstack(all_preds)
all_labels = np.vstack(all_labels)

convertion des probas en prédictions binaires
binary_preds = (all_preds > 0.5).astype(int)

Calculate metrics

print ("\n=== Rapport de classification ===")

print(classification_report(all_labels, binary_preds,
target_names=target_classes,
zero_division=0))

Calcul des scores AUC-ROC pour chaque classe

print ("\n=== Scores AUC-ROC ===")
for i, label in enumerate(target_classes):
try:

Check <f we have both positive and negative samples

if len(np.unique(all_labels[:, i])) > 1:
auc_score = roc_auc_score(all_labels[:, i]l, all_preds[:, i])
print (£f"{label}: {auc_score:.4f}")

else:
print (f"{label}: N/A (only one class present in test set)")

except Exception as e:
print (f"{label}: N/A (error: {str(e)})")

return all_preds, all_labels, binary_preds

12

def plot_training history(train_losses, val_losses):

mnimnn

figure de l'historique d'entrainement
plt.figure(figsize=(10, 5))
plt.plot(train_losses, label='Training Loss')
plt.plot(val_losses, label='Validation Loss')
plt.xlabel ('Epoch')
plt.ylabel('Loss')
plt.title('Training History')
plt.legend()
plt.grid(True, alpha=0.3)
plt.show()

def plot_confusion_matrix(y_true, y_pred, class_names):
nmnn

figure de matrices de confusion pour chaque classe
nmnn

num_classes = len(class_names)

rows = (num_classes + 2) // 3

cols = min(3, num_classes)

fig, axes = plt.subplots(rows, cols, figsize=(5*cols, 5*rows))
if num_classes ==

axes = [axes]
else:

axes = axes.ravel() if num_classes > 1 else [axes]

for i, class_name in enumerate(class_names):
cm = confusion_matrix(y_truel:, il, y_pred[:, i], labels=[0, 1])
sns.heatmap(cm, annot=True, fmt='d', ax=axes[i], cmap='Blues')
axes[i] .set_title(f'{class_name}')
axes[i] .set_ylabel('Vraies')
axes[i] .set_xlabel('Predites')

cacher ce qut n'est pas utilisé
for i in range(num_classes, len(axes)):
axes[i] .axis('off')

plt.tight_layout ()
plt.show()

1.17 Partie 4. Entralnement et évaluation du modéle
1.17.1 Quelques directives

o Entrainer le modeéle a 'aide de la fonction train__model
o Afficher I'historique d’entrainement a ’aide de la fonction plot__training_ history

13

[1:

e Penser a sauvegarder le modele a la fin de ’entralnement

e Charger les poids du modele sauvegardé pour I’évaluer sur le jeu de données test a I'aide de
la fonction evaluate model

o Afficher une matrice de confusion par classe.

e Penser a utiliser l'instruction suivante, avant et apres ’entrainement pour vider le cache de
la GPU.

avant et aprés l'entrainement
if torch.cuda.is_available():
torch.cuda.empty_cache()

1.18 Instructions a respecter :

Le devoir peut étre traité seul ou en binéme uniquement. La copie a rendre doit étre générée en
pdf uniquement & partir du notebook de travail et incluant les sorties (résultats de vos calcul). En
absence des sorties des cellules de code, votre code ne sera pas testé donc insuffisant. Votre copie
est a rendre sous la forme prenom_ nom.pdf ou prenoml_noml_prenom2_nom2.pdf. Vous pouvez
me ’envoyer par mail ou déposer sur un drive si nécessaire. Aucune copie fabriquée avec des
bouts de captures d’écrans ne sera acceptée.

14

	Classification des ECG de la base de données PTB-XL
	Chargement des librairies
	Fonction de chargement des données
	Déclaration de variables globales
	Chargement des données
	Fonction de traitement des étiquettes
	Filtrage et traitement automatique des étiquettes (classes)
	Fonction pour stratification apprentissage-validation-test
	Création d'une partition avec stratification
	Vérification des effectifs des classes dans les trois jeux données
	Partie 1. Standarisation des ECG
	Une classe utilitaire pour créer des tenseurs PyTorch
	Création des trois itérateurs sur les jeux de données apprentissage, validation et test
	Fonction pour tracer un ECG
	Partie 2. Création d'un modèle CNN_LSTM :
	Quelques directives

	Partie 3. Entraînement du modèle
	Quelques fonctions utilitaires
	Partie 4. Entraînement et évaluation du modèle
	Quelques directives

	Instructions à respecter :

